Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 9 - Section 9.1 - Assess Your Understanding - Vocabulary and Skill Building - Page 436: 16

Answer

Lower Bound: 0.319; Upper Bound: 0.481

Work Step by Step

$x$ = 80, n = 200, 98% confidence i) $\hat{p}$ = $\frac{x}{n}$ = $\frac{80}{200}$ = 0.400 ii) Find $\frac{\alpha}{2}$ $\alpha = 1 - 0.98$ = 0.02 $\frac{0.02}{2}$ = 0.01 iii) The z-score that corresponds to 0.01 is 2.3263 iv) Find margin of error E = $z \cdot \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = 2.3263 \cdot \sqrt{\frac{0.400(0.600)}{200}}$ $\approx$ 0.081 iv) Find lower bound of CI: $\hat{p}$ - E = 0.400 - 0.081 = 0.319 v) Find upper bound of CI: $\hat{p}$ + E = 0.400 + 0.081 = 0.481
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.