Answer
$5$
Work Step by Step
$ \overrightarrow{AB} = \langle 1-0, 2-0,0-0 \rangle= \langle 1,2, 0 \rangle$
$ \overrightarrow{AC} = \langle 0, -3, 2 \rangle$
$ \overrightarrow{AD} = \langle 3, -4, 5 \rangle$
The volume of the parallelopiped is the absolute value of the triple scalar product,
$( \overrightarrow{AB}\times \overrightarrow{AC})\cdot \overrightarrow{AD}=\left|\begin{array}{rrr}
1 & 2 & 0\\
0 & -3 & 2\\
3 & -4 & 5
\end{array}\right|=1(-15+8)-2(0-6)+0$
$=-7+12=5$
$V=|5|=5$