#### Answer

\[y = x - 1\]

#### Work Step by Step

\[\begin{gathered}
y = \ln x \hfill \\
Evaluate\,\,the\,\,function\,\,at\,\,x = 1 \hfill \\
y = \ln \,\left( 1 \right) = 0 \hfill \\
Point\,\,\,\left( {1,0} \right) \hfill \\
Find\,\,the\,\,deriva\,tive\,\,of\,\,the\,\,function \hfill \\
{y^,} = \,\,{\left[ {\ln x} \right]^,} = \frac{1}{x} \hfill \\
Evaluate\,\,{y^,}\,\left( 1 \right) \hfill \\
m = {y^,}\,\left( 1 \right) = \frac{1}{1} = 1 \hfill \\
m = 1 \hfill \\
Use\,\,the\,\,point\, - slope\,\,form \hfill \\
y - {y_1} = m\,\left( {x - {x_1}} \right) \hfill \\
y - 0 = 1\,\left( {x - 1} \right) \hfill \\
y = x - 1 \hfill \\
\end{gathered} \]