Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.2 Integration by Parts - 7.2 Exercises - Page 522: 67

Answer

$$\frac{1}{2}\sec x\tan x + \frac{1}{2}\ln \left| {\sec x + \tan x} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sec }^3}x} dx \cr & {\text{Rewrite}} \cr & = \int {\sec x{{\sec }^2}x} dx \cr & {\text{Integrate by parts }} \cr & {\text{Let }}u = \sec x,{\text{ }} \to {\text{ }}du = \sec x\tan xdx \cr & dv = {\sec ^2}xdx \to v = \tan x \cr & {\text{Use integration by parts formula}} \cr & \int {udv} = uv - \int {vdu} \cr & \int {{{\sec }^3}x} dx = \sec x\tan x - \int {\tan x\left( {\sec x\tan x} \right)} dx \cr & \int {{{\sec }^3}x} dx = \sec x\tan x - \int {{{\tan }^2}x\sec x} dx \cr & {\text{Use pythagorean identity}} \cr & \int {{{\sec }^3}x} dx = \sec x\tan x - \int {\left( {{{\sec }^2}x - 1} \right)\sec x} dx \cr & \int {{{\sec }^3}x} dx = \sec x\tan x - \int {\left( {{{\sec }^3}x - \sec x} \right)} dx \cr & \int {{{\sec }^3}x} dx = \sec x\tan x - \int {{{\sec }^3}x} dx + \int {\sec x} dx \cr & {\text{Combine }}\int {{{\sec }^3}x} dx \cr & 2\int {{{\sec }^3}x} dx = \sec x\tan x + \int {\sec x} dx \cr & \int {{{\sec }^3}x} dx = \frac{1}{2}\sec x\tan x + \frac{1}{2}\int {\sec x} dx \cr & {\text{Integrate }}\int {\sec x} dx \cr & \int {{{\sec }^3}x} dx = \frac{1}{2}\sec x\tan x + \frac{1}{2}\ln \left| {\sec x + \tan x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.