Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.3 The Integral Test and Estimates of Sums - 11.3 Exercises - Page 766: 24

Answer

$\displaystyle\sum_{n=1}^{\infty}ne^{-n^2}$ is convergent

Work Step by Step

\[\sum_{k=1}^{\infty}ke^{-k^2}=\sum_{n=1}^{\infty}ne^{-n^2}\] Let \[\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}ne^{-n^2}\] \[\Rightarrow a_n=ne^{-n^2}=\frac{n}{e^{n^2}}\] $a_n$ is positive term and monotonically decreasing. so integral test is applicable. Let \[I=\int_{1}^{\infty}xe^{-x^2}dx\] \[\Rightarrow I=\lim_{t\rightarrow \infty}\int_{1}^{t} xe^{-x^2}dx\;\;\;\;\;\;\;\ldots (1)\] Let \[I_1=\int xe^{-x^2}dx\] Substitute $y=-x^2\;\;\Rightarrow\;\;dy=-2xdx\;\Rightarrow \displaystyle\frac{-1}{2}dy=xdx$ \[\Rightarrow I_1=\frac{-1}{2}\int e^ydy=\frac{-1}{2}e^y\] \[\Rightarrow I_1=\frac{-1}{2}e^{-x^2}=\frac{-1}{2e^{x^2}}\;\;\;\;\;\;\;\ldots (2)\] Using (2) in (1) \[\Rightarrow I=\lim_{t\rightarrow \infty}\left[\frac{-1}{2e^{x^2}}\right]_{1}^{t}\] \[\Rightarrow I=\lim_{t\rightarrow \infty}\left[\frac{-1}{2e^{t^2}}+\frac{1}{2e}\right]\] \[\Rightarrow I=0+\frac{1}{2e}=\frac{1}{2e}\] Which is finite so $I$ is convergent. By Integral test, $\displaystyle\sum_{n=1}^{\infty}ne^{-n^2}$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.