Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.3 The Integral Test and Estimates of Sums - 11.3 Exercises - Page 766: 18

Answer

$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2+2n+2}$ is convergent.

Work Step by Step

Let \[\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\frac{1}{n^2+2n+2}\] \[\Rightarrow a_n=\frac{1}{n^2+2n+2}=\frac{1}{(n+1)^2+1}\] $a_n$ is positive term and monotonically decreasing. So Integral test is applicable. Let \[I=\int_{1}^{\infty}\frac{1}{(x+1)^2+1}dx\] \[I=\lim_{t\rightarrow\infty}\int_{1}^{t}\frac{1}{(x+1)^2+1}dx\;\;\;\;\;\;\;\;\;\;\ldots(1)\] Let \[I_1=\int\frac{1}{(x+1)^2+1}dx\] Substitute $y=x+1\;\Rightarrow\; dy=dx$ \[\Rightarrow I_1=\int\frac{dy}{y^2+1}\] \[\left[\int\frac{1}{x^2+a^2}dx=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)\right]\] \[\Rightarrow I_1=\tan^{-1}y\] \[\Rightarrow I_1=\tan^{-1}(x+1)\;\;\;\;\;\;\;\;\;\;\ldots (2)\] Using (2) in (1) \[I=\lim_{t\rightarrow\infty}\left[\tan^{-1}(x+1)\right]_{1}^{t}\] \[\Rightarrow I=\lim_{t\rightarrow\infty}\left[\tan^{-1}(t+1)-\tan^{-1}2\right]\] \[\Rightarrow I=\frac{\pi}{2}-\tan^{-1}2\] Which is finite so $I$ is convergent. By integral test, $\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2+2n+2}$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.