Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.3 Center of Mass - Exercises - Page 483: 13

Answer

$$(\bar{x}, \bar{y})= (9/8,18/5 ) $$

Work Step by Step

Since \begin{aligned} M_{y} &=\delta \int_{a}^{b} x f(x) d x \\ &=\int_{0}^{3} x\left(9-x^{2}\right) d x \\ &=\int_{0}^{3}\left(9 x-x^{3}\right) d x \\ &=\left.\left(\frac{9}{2} x^{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{3} \\ &=\frac{81}{4} \end{aligned} and \begin{aligned} M_{x} &=\frac{1}{2} \delta \int_{a}^{b} f(x)^{2} d x \\ &=\frac{1}{2} \int_{0}^{3}\left(9-x^{2}\right)^{2} d x \\ &=\frac{1}{2} \int_{0}^{3}\left(9-x^{2}\right)^{2} d x \\ &=\frac{1}{2}\left(81-18 x^{2}+x^{4}\right) d x \\ &=\left.\frac{1}{2}\left(81 x-6 x^{3}+\frac{x^{5}}{5}\right)\right|_{0} ^{3} \\ &=\frac{1}{2}\left(\frac{648}{5}\right) \\ &=\frac{324}{5} \end{aligned} and $$M=\delta A=\int_{0}^{3}\left(9-x^{2}\right) d x=\left.\left(9 x-\frac{x^{3}}{3}\right)\right|_{0} ^{3}=18$$ Then $$\bar{x}=\frac{M_{y}}{M}=\frac{81}{4 \times 18}=\frac{9}{8} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{M}=\frac{324}{5 \times 18}=\frac{18}{5}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.