Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.1 Tangent Lines And Rates Of Change - Exercises Set 2.1 - Page 120: 14

Answer

a) The average rate of change of y=$m_{sec}$=$\frac{-3}{4}$ b) Instantaneous rate of change of y at specific value of $x_{0} $=$m_{tan}$=$-2$ c) Instantaneous rate of change of y at specific value of $x_{0} $=$m_{tan}$=$-\frac{2}{x_{0}^3}$ d) points (1,1) and (2, \frac{1}{4}) Draw graph using these two points

Work Step by Step

a) find the average rate of change of y w.r.t x over intervals$ x_{0}$ and $ x_{1}$. Given: y=$\frac{1}{x^{2}}$ let y=f(x)=$\frac{1}{x^2}$ since we have $ x_{0}$=1 and $ x_{1}$=2 then we get f($ x_{0}$)=f(2)=$\frac{1}{2^{2}}$= $\frac{1}{4}$ and f($ x_{1}$)=f(1)=$\frac{1}{1}$=1 Now, The average rate of change of y=$m_{sec}$=$\frac{f( x_{1})-f(x_{0})}{x_{1}-x_{0}}$ putting values, The average rate of change of y=$m_{sec}$=$\frac{\frac{1}{4}-1}{2-1}$ =$\frac{\frac{-3}{4}}{1}$ a) The average rate of change of y=$m_{sec}$=$\frac{-3}{4}$ b) As we know that the specific value of $x_{0}$ =1, then $f( x_{1})=\frac{1}{x_{1}^2}$ and $f(x_{0})=1$ Instantaneous rate of change of y at specific value of $x_{0} $=$m_{tan}$ =$\lim\limits_{x_{1} \to 1}$$\frac{f( x_{1})-f(x_{0})}{x_{1}-x_{0}}$ =$\lim\limits_{x_{1} \to 1}$$\frac{(\frac{1}{x_{1}^2}-1)}{x_{1}-1}$ =$\lim\limits_{x_{1} \to 1}$$ \frac{1-x_{1}^2}{x_{1}^2({x_{1}-1})}$ =$\lim\limits_{x_{1} \to 1}$$ -(\frac{-1+x_{1}^2}{x_{1}^2({x_{1}-1})})$ =$\lim\limits_{x_{1} \to 1}$$ -(\frac{x_{1}^2-1}{x_{1}^2({x_{1}-1})})$ =$\lim\limits_{x_{1} \to 1}$$ -(\frac{(x_{1}-1)({x_{1}+1})}{x_{1}^2({x_{1}-1})})$ =$\lim\limits_{x_{1} \to 1}$$ -(\frac{{x_{1}+1}}{x_{1}^2})$ Applying limit =$-(\frac{(1)+1}{(1)^2})$ =$-(\frac{2}{1})$ =$-2$ Instantaneous rate of change of y at specific value of $x_{0} $=$m_{tan}$=$-2$ c) The arbitrary value of $x_{0}$ =$x_{0}$ then $f( x_{1})=\frac{1}{x_{1}^2}$ and $f(x_{0})=\frac{1}{{x_{0}^2}}$ Instantaneous rate of change of y at arbitrary value of $x_{0} $=$m_{tan}$ =$\lim\limits_{x_{1} \to x_{0}}$$\frac{f( x_{1})-f(x_{0})}{x_{1}-x_{0}}$ =$\lim\limits_{x_{1} \to x_{0}}$$\frac{( \frac{1}{x_{1}^2}-\frac{1}{ x_{0}^2})}{x_{1}- x_{0}}$ =$\lim\limits_{x_{1} \to x_{0}}$$\frac{( \frac{ x_{0}^2-x_{1}^2}{ x_{1}^2x_{0}^2})}{x_{1}- x_{0}}$ =$\lim\limits_{x_{1} \to x_{0}}$$\frac{( \frac{ -x_{1}^2+x_{0}^2}{ x_{1}^2x_{0}^2})}{x_{1}- x_{0}}$ =$\lim\limits_{x_{1} \to x_{0}}$$\frac{-( \frac{ x_{1}^2-x_{0}^2}{ x_{1}^2x_{0}^2})}{x_{1}- x_{0}}$ =$\lim\limits_{x_{1} \to x_{0}}$$ -(\frac{(x_{1}-x_{0})({x_{1}+x_{0}})}{x_{1}^2x_{0}^2({x_{1}-x_{0}})})$ =$\lim\limits_{x_{1} \to x_{0}}$$-\frac{1(x_{1}+x_{0})}{ x_{1}^2x_{0}^2(1)}$ =$\lim\limits_{x_{1} \to x_{0}}$$-\frac{(x_{1}+x_{0})}{ x_{1}^2x_{0}^2}$ Applying limit =$-\frac{((x_{0})+x_{0})}{( x_{0}^2) x_{0}^2}$ Instantaneous rate of change of y at specific value of $x_{0} $=$m_{tan}$=$-\frac{2x_{0}}{x_{0}^4}$ Instantaneous rate of change of y at specific value of $x_{0} $=$m_{tan}$=$-\frac{2}{x_{0}^3}$ take value of ${x_{0}}$ as 1,2,3,4,5,...... d) put value of ${x_{0}}$= 1 and ${x_{1}}$=2 in y=$\frac{1}{x^2}$ at $x_{0}$=1 f($ x_{0}$)=f(2)=$\frac{1}{1}=1$ (2, 1) at $x_{1}$=2 f($ x_{1}$)=f(3)=$(\frac{1}{2})^2$ (2, $\frac{1}{4}$) graph : draw graph using the given points (1,1) and (2,$\frac{1}{4}$)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.