Answer
$Q(-3)=21$
.
Work Step by Step
The remainder theorem states that when a polynomial $p(x)$ is divided by a linear polynomial $(x - a)$, then the remainder is equal to $p(a)$.
If $Q(x)=x^4+4x^3+7x^2+10x+15$, find $Q(-3)$
$Q(-3)=(-3)^4+4(-3)^3+7(-3)^2+10(-3)+15$
$Q(-3)=81-108+63-30+15$
$Q(-3)=159-138$
$Q(-3)=21$
.