College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter 3 - Polynomial and Rational Functions - Exercise Set 3.4 - Page 387: 20

Answer

a. $\frac{p}{q}:\qquad \pm 1, \pm13$ b. $1$ is a zero of the function c. $x\displaystyle \in\{\ 2 \pm 3i, 1\}$

Work Step by Step

See The Rational Zero Theorem: If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^{3}-5x^2+17x-13$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm13$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm13$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| & 1 & -5 & 17 & -13\\ & & 1 & -4 & 13\\ & -- & -- & -- & --\\ & 1 & -4 & 13 & |\underline{0} \end{array}$ ${1}$ is a zero, $f(x)=(x-1)(x^{2} -4x+13)$ c. Using quadratic formula, $x=\frac{-b \pm \sqrt {b^2-4ac}}{2a}$. we can solve for the quadratic $ax^2+bx+c$, In our case of, $x^{2} -4x+13$, $a=1, b=-4, c=13$ $x=\frac{4 \pm \sqrt {(-4)^2-4\times 1 \times 13}}{2\times 1}$, $x=\frac{4 \pm 6i}{2}$, $x={2 \pm 3i}$ The zeros of f satisfy $f(x)=0$ $x\displaystyle \in\{\ 2 \pm 3i, 1\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.