College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter 3 - Polynomial and Rational Functions - Exercise Set 3.4 - Page 387: 16

Answer

a. $ \frac{p}{q}:\qquad \pm 1, \pm 5$ b. $1$ is a zero c. $x\displaystyle \in\left\{\frac{3 \pm \sqrt {11}i}{2}, 1\right\}$

Work Step by Step

See The Rational Zero Theorem: If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^{3}-4x^{2}+8x-5$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 5$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 5$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| & 1 & -4 & 8 & -5\\ & & 1 & -3 & 5\\ & -- & -- & -- & --\\ & 1 & -3 & 5 & |\underline{0} \end{array}$ ${1}$ is a zero, $f(x)=(x-1)(x^{2} -3x+5)$ c. Using quadratic formula, $x=\frac{-b \pm \sqrt {b^2-4ac}}{2a}$. we can solve for the quadratic $ax^2+bx+c$, In our case of, $x^{2} -3x+5$, $a=1, b=-3, c=5$ $x=\frac{3 \pm \sqrt {-3^2-4\times 1 \times 5}}{2\times 1}$, $x=\frac{3 \pm \sqrt {9-20}}{2}$, $x=\frac{3 \pm \sqrt {11}i}{2}$ The zeros of f satisfy $f(x)=0$ $x\in\left\{\frac{3 \pm \sqrt {11}i}{2}, 1\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.