University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 23 - Electric Potential - Problems - Exercises - Page 781: 23.60

Answer

(a) $V = 240 \times 10^3 \,\text{V}$ (b) $V = -30 \times 10^3 \,\text{V}$ (c) $V = -90 \times 10^3 \,\text{V}$

Work Step by Step

(a) $R$ is the radius of the sphere and $r$ is the distance where the potential is measured. When ($r R$), the potential is \begin{equation} V = \dfrac{1}{4 \pi \epsilon_{\circ}} \dfrac{q}{r} \end{equation} $r$ = $2.5 \text{cm}$, the potenatil $V$ is \begin{align*} V &= \dfrac{1}{4 \pi \epsilon_{\circ}} \left(\dfrac{q_{1}}{R_{1}} + \dfrac{q_{2}}{R_{2}} \right) \\ &= \left(9.0 \times 10^{9} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}\right)\left(\frac{3.00 \times 10^{-6} \mathrm{C}}{0.05 \mathrm{m}}+\frac{-5.00 \times 10^{-6} \mathrm{C}}{0.15 \mathrm{m}}\right)\\ &=\boxed{240 \times 10^3 \,\text{V}} \end{align*} (b) $r$ = 10 cm the potenatil $V$ is \begin{align*} V&= \dfrac{1}{4 \pi \epsilon_{\circ}} \left(\dfrac{q_{1}}{r} + \dfrac{q_{2}}{R_{2}} \right) \\ &= \left(9.0 \times 10^{9} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}\right)\left(\frac{3.00 \times 10^{-6} \mathrm{C}}{0.10 \mathrm{m}}+\frac{-5.00 \times 10^{-9} \mathrm{C}}{0.15 \mathrm{m}}\right)\\ &=\boxed{-30 \times 10^3 \,\text{V}} \end{align*} (c) $r$ = 20 cm the potenatil $V$ is \begin{align*} V &= \dfrac{1}{4 \pi \epsilon_{\circ}} \left(\dfrac{q_{1}}{r} + \dfrac{q_{2}}{r} \right) \\ &= (9.0 \times 10^{9} \mathrm{~N\cdot m^{2}/C^{2}}) \left(\dfrac{ 3.00 \times 10^{-9} \,\text{C}}{0.20 \,\text{m}} + \dfrac{- 5.00 \times 10^{-9} \,\text{C}}{0.20 \,\text{m}} \right) \\ &=\boxed{-90 \times 10^3 \,\text{V}} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.