University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 22 - Gauss's Law - Problems - Exercises - Page 745: 22.4

Answer

(a) $\Phi_{E} = 1.36 \times 10^{5} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}$ (b) The same flux $\Phi_{E} = 1.36 \times 10^{5} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}$ (c) $\Phi_{E} = 2.71 \times 10^{5} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}$

Work Step by Step

(a) The electric field for the cylindrical shape is $$ E=\frac{\lambda}{2 \pi \epsilon_{0} r} $$ and the area is $ A=2 \pi r l $. So, the electric flux through the cylinder is \begin{align} \Phi_{E}&=E A \cos \phi\\ & =E A \cos 0 \\ & =\left(\frac{\lambda}{2 \pi \epsilon_{0} r} \right)(2 \pi r l)\\ & =\frac{\lambda l}{\epsilon_{0}}\\ & =\frac{\left(3 \times 10^{-6} \mathrm{C} / \mathrm{m}\right)(0.4 \mathrm{m})}{8.854 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}}=\boxed{1.36 \times 10^{5} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}} \end{align} (b) As shown in part (a), the flux doesn't depend on the radius of the cylinder, so the flux is the same $$ \boxed{\Phi_{E} = 1.36 \times 10^{5} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}}$$ (c) When the length of the cylinder becomes $l = 0.8$ m, the flux will be \begin{align} \Phi_{E}&=\frac{\lambda l}{\epsilon_{0}}\\ & =\frac{\left(3 \times 10^{-6} \mathrm{C} / \mathrm{m}\right)(0.8 \mathrm{m})}{8.854 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}}=\boxed{2.71 \times 10^{5} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.