University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 20 - The Second Law of Thermodynamics - Problems - Exercises - Page 677: 20.5

Answer

(a) $p_a = 12.3 atm$ (b) $Q_H = 5470.2 J$ (c) $Q_C = -3722.8 J$ (d) $W = 1747.4 J$ (e) $𝜖= 31.9 \%$

Work Step by Step

(a) The pressure of gas at point a is $p_a 𝑉_a^𝛾= p_b V_b^𝛾$ $p_a = \frac{p_b V_b^𝛾}{𝑉_a^𝛾} $ $p_a = p_b (\frac{V_b}{𝑉_a})^𝛾 $ $p_a = (1.50 atm) (\frac{9.0 \times 10^{-3} m^3}{2.0 \times 10^{-3} m^3})^{1.4} $ $p_a = 12.3 atm$ (b) Heat enters the gas through process ca, $Q_H = \frac{C_V V \Delta p}{R} $ $Q_H = \frac{(5/2 R) V \Delta p}{R} $ $Q_H = \frac{5 V \Delta p}{2} $ $Q_H = \frac{5 (2.0 \times 10^{-3} m^3 ) (12.3 atm - 1.5 atm) (1.013 \times 10^5 Pa/atm)}{2} $ $Q_H = 5470.2 J$ (c) The heat leaves through process bc. $Q_C = \frac{C_p p \Delta V}{R} $ $Q_C = \frac{(7/2 R) p \Delta V}{R} $ $Q_C = \frac{7 p \Delta V}{2} $ $Q_C = \frac{7 (1.50 atm) (1.013 \times 10^5 Pa/atm) (2.0 \times 10^{-3} m^3 - 9.0 \times 10^{-3} m^3)}{2} $ $Q_C = -3722.8 J$ (d) Work the engine does $W = Q_H + Q_C$ $W = 5470.2 J + (-3722.8 J) $ $W = 1747.4 J$ (e) $𝜖= \frac{𝑊}{|𝑄_𝐻 |} \times 100 $ $𝜖= \frac{1747.4 J}{5470.2 J} \times 100 $ $𝜖= 31.9 \%$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.