Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 9 - Linear Momentum and Collisions - Problems and Conceptual Exercises - Page 291: 35

Answer

(a) $\frac{1}{16}$ (b) $\frac{5}{3}$

Work Step by Step

(a) We can find the ratio of final and kinetic energy of the system as follows: $K_i=\frac{1}{2}m_1v^2+\frac{1}{2}m_2v^2$ $K_i=\frac{1}{2}(m_1+m_2)v^2$ and $K_f=\frac{1}{2}(m_1+m_2)v_f^2$ Given that $v_f=\frac{v}{4}$ $\implies K_f=\frac{1}{2}(m_1+m_2)(\frac{v}{4})^2$ $K_f=\frac{1}{32}(m_1+m_2)v^2$ Now $\frac{K_f}{K_i}=\frac{\frac{1}{32}(m_1+m_2)v^2}{\frac{1}{2}(m_1+m_2)v^2}=\frac{1}{16}$ (b) We can find the required ratio of mass as follows: $P_i=P_f$ $\implies m_iv+(-m_2v)=(m_1+m_2)\frac{v}{4}$ This simplifies to: $4m_1-4m_2=m_1+m_2$ $\implies 3m_1-5m_2=0$ $\implies \frac{m_1}{m_2}=\frac{5}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.