Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 9 - Linear Momentum and Collisions - Problems and Conceptual Exercises - Page 289: 4

Answer

$a.\quad 0.69 \mathrm{m}/\mathrm{s}$ $ b.\quad$no $c.\quad 0.40\mathrm{J}$

Work Step by Step

In a system of several objects, the total linear momentum is the vector sum of the individual momenta: $\displaystyle \sum\vec{\mathrm{p}}=m_{1}\vec{\mathrm{v}}_{1}+m_{2}\vec{\mathrm{v}}_{2}$ ------- $a.$ $\displaystyle \sum\vec{\mathrm{p}}=0$ $m_{1}\vec{\mathrm{v}}_{1}+m_{2}\vec{\mathrm{v}}_{2}=0$ $m_{2}\vec{\mathrm{v}}_{2}=-m_{1}\vec{\mathrm{v}}_{1}$ $\displaystyle \mathrm{v}_{2}=-\frac{m_{1}\mathrm{v}_{1}}{m_{2}}$ $=\displaystyle \frac{(0.35\mathrm{k}\mathrm{g})(\mathrm{l}.2\mathrm{m}/\mathrm{s})}{0.61\mathrm{k}\mathrm{g}}=0.69 \mathrm{m}/\mathrm{s}$ $b.$ Both carts are in motion and have mass. Both have nonzero kinetic energies. The kinetic energy of the system is not zero $c.$ $\displaystyle \sum K=\frac{1}{2}m_{1}\mathrm{v}_{1}^{2}+\frac{1}{2}m_{2}\mathrm{v}_{2}^{2}$ $=\displaystyle \frac{1}{2}(0.35 \mathrm{k}\mathrm{g} )(1.2 \displaystyle \mathrm{m}/\mathrm{s})^{2}+\frac{1}{2}(0.61 \mathrm{k}\mathrm{g} )(0.69 \mathrm{m}/\mathrm{s})^{2}$ $=0.40\mathrm{J}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.