Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 24 - Alternating-Current Circuits - Problems and Conceptual Exercises - Page 869: 48

Answer

Please see the work below.

Work Step by Step

We can find the required rms voltage as follows: The impedance of the circuit is $Z=\sqrt{R^+(2\pi fL-\frac{1}{2\pi fC})^2}$ $\implies Z=\sqrt{(9.9\times 10^3\Omega)^2+(2\pi\times 60.0Hz\times 25\times 10^{-3}H-\frac{1}{2\pi(60.0Hz)(0.15\times 10^{-6}F)})^2}$ $Z=2.026\times 10^4\Omega$ Now $I_{rms}=\frac{V_{rms}}{Z}$ $I_{rms}=\frac{115V}{2.026\times 10^4\Omega}$ $I_{rms}=5.676\times 10^{-3}A$ The rms voltage across the inductor is can be determined as $V_{rms,L}=I_{rms}\times X_L$ $V_{rms,L}=I_{rms}(2\pi fL)$ $V_{rms,L}=2\pi(5.676\times 10^{-3}A)(60.0Hz)(25\times 10^3H)=53mV$ The rms voltage across the capacitor is $V_{rms,C}=I_{rms}(\frac{1}{2\pi fC})$ $V_{rms,C}=(5.676\times 10^{-3}A)(\frac{1}{2\pi(60.0Hz)(0.15\times 10^{-6}F)})=100V$ Now the rms voltage across the resistor is $V_{rms,R}=I_{rms}R$ We plug in the known values to obtain: $V_{rms,R}=(5.676\times 10^{-3}A)(9.9\times 10^3\Omega)=56V$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.