Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 20 - Electric Potential and Electric Potential Energy - Problems and Conceptual Exercises - Page 718: 22

Answer

a) $\Delta V=0.84KV$ b) $\Delta v=0.63KV$ c) $\Delta V=0.42KV$

Work Step by Step

(a) We know that $\frac{1}{2}mv_i^2+eV_i=\frac{1}{2}mv_f^2+eV_f$ $\frac{1}{2}mv_i^2-\frac{1}{2}mv_f^2=e(V_f-V_i)=e\Delta V$ This simplifies to: $\Delta V=\frac{m(v_i^2-v_f^2)}{2e}$ We plug in the known values to obtain: $\Delta V=\frac{(1.673\times 10^{-27})[(4.0\times 10^5)^2-(0)^2]}{2(1.6\times 10^{-19})}$ $\Delta V=0.84KV$ (b) We know that $\Delta V=\frac{1}{2}[v_i^2-(\frac{1}{2}v_i)^2]=\frac{3mv_i^2}{8e}$ We plug in the known values to obtain: $\Delta v=\frac{3(1.673\times 10^{-27})(4.0\times 10^5)^2}{8(1.6\times 10^{-19})}$ $\Delta v=0.63KV$ (c) We know that $K.E_i+eV_i=\frac{1}{2}K_i+eV_f$ This simplifies to: $\Delta V=\frac{K.E_i}{2e}$ $\implies \Delta V=\frac{mv_i^2}{2e}$ We plug in the known values to obtain: $\Delta V=\frac{(1.673\times 10^{-27})(4.0\times 10^5)^2}{2(1.6\times 10^{-19})}=0.42KV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.