Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 18 - The Laws of Thermodynamics - Problems and Conceptual Exercises - Page 648: 93

Answer

Please see the work below.

Work Step by Step

(a) We know that for the process $A\rightarrow B$ $W_{AB}=P_AV_A\ln(\frac{V_B}{V_A})$ We plug in the known values to obtain: $W_{AB}=(600KPa)(0.75\times 10^{-3}m^3)\ln(\frac{4.5\times 10^{-3m^3}}{0.75\times 10^{-3}m^3})$ $W_{AB}=806J$ Now $Q_{AB}=\Delta U_{AB}+W_{AB}$ $\implies Q_{AB}=0+806J=806J$ For process $B\rightarrow C$ $Q_{BC}=\frac{5}{2}nR\Delta T$ $\implies Q_{BC}=\frac{5}{2}P\Delta V$ $\implies Q_{BC}=\frac{5}{2}(100KPa)(0.75\times 10^{-3}m^3-4.5\times 10^{-3}m^3)=-938J$ $W_{BC}=P\Delta V$ $W_{BC}=(100\times 10^3Pa)(0.75\times 10^{-3}m^3-4.5\times 10^{-3}m^3)=-375J$ and $\Delta U_{BC}=Q_{BC}-(-W_{BC})$ $\Delta U_{BC}=-938J-(-375J)=-563J$ For process $C\rightarrow A$ $\Delta V=0$ $\implies W_{CA}=P\Delta V$ $W=0$ and $\Delta U_{CA}=-(\Delta U_{AB}+\Delta U_{BC})$ $\Delta U_{CA}=-(0+(-563J))$ $\Delta U_{CA}=563J$ $Q_{CA}=\Delta U_{CA}+W_{CA}$ $Q_{CA}=563J+0=563J$ (b) We can find the efficiency of the engine as follows: $e=\frac{W}{Q_k}$ We plug in the known values to obtain: $e=\frac{806J-375J}{806J+563J}$ $e=0.31$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.