Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 18 - The Laws of Thermodynamics - Problems and Conceptual Exercises - Page 645: 27

Answer

Please see the work below.

Work Step by Step

(a) We know that $T=\frac{PV}{nR}$ $\implies T_A=\frac{(150\times 10^3KPa)(1.00m^3)}{(67.5mol)(8.31J/mol.K)}$ $T_A=267K$ At point B: $T_B=\frac{(50\times 10^3KPa)(4.00m^3)}{(67.5mol)(8.31J/mol.K)}=357K$ At point C: $T_C=\frac{(50\times 10^3KPa)(1.00m^3)}{(67.5mol)(8.31J/mol.K)}=89.1K$ (b) We know that for process $A\rightarrow B$, the temperature rises and the gas does the work; therefore, we know that heat enters the system. For process $B\rightarrow C$, the temperature drops and work is done on the gas, hence heat leaves the system. For process $C\rightarrow A$, the temperature rises and no work is done on or by the gas, hence heat enters the system. (c) We know that for process $A\rightarrow B$ $Q=\frac{3}{2}nR\Delta T+\frac{1}{2}\Delta P\Delta V$ $\implies Q=\frac{3}{2}(67.5mol)(8.31J/mol.K)(357K-268K)+\frac{1}{2}(150KPa+50KPa)(4-1)m^3=376KJ$ For process $B\rightarrow C$ $Q=\frac{3}{2}nR\Delta T+\frac{1}{2}P\Delta V$ $\implies Q=\frac{3}{2}(67.5mol)(8.31J/mol.K)(8.91K-357K)+\frac{1}{2}(1-4)m^3=-375KJ$ For process $C\rightarrow A$ $Q=\frac{3}{2}nR\Delta T+\frac{1}{2}P\Delta V$ $\implies Q=\frac{3}{2}(67.5mol)(8.31J/mol.K)(267K-89.1K)+0$ $\implies Q=150KJ$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.