Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 17 - Phases and Phase Changes - Problems and Conceptual Exercises - Page 604: 28

Answer

$\mathrm{a}.\quad 4.0\times 10^{6}\ Pa$ $\mathrm{b}.\quad 1.18\times 10^{-20}\ \mathrm{J}$ $\mathrm{c}.\quad $Pressure halves, average kinetic energy remains the same.

Work Step by Step

$PV=nRT \quad (17- 5)$ where the universal gas constant, $R=8.31\ \mathrm{J}/(\mathrm{mol}\cdot \mathrm{K})$, Kinetic theory relates the average kinetic energy of the molecules in a gas to the Kelvin temperature of the gas, $T$: $(\displaystyle \frac{1}{2}mv^{2})_{\mathrm{a}\mathrm{v}}=K_{\mathrm{a}\mathrm{v}}=\frac{3}{2}kT \qquad (17- 15)$ $(k =1.38\times 10^{-23}\ \mathrm{J}/\mathrm{K}$ is Boltzmann's constant.$)$ ---- $\mathrm{a}.$ Solve 17-5 for P, (temperature in kelvins): $P=\displaystyle \frac{nRT}{V}=\frac{(3\mathrm{mol})[8.31\ \mathrm{J}/(\mathrm{mol}\cdot \mathrm{K})](273.15+295\mathrm{K})}{0.0035\mathrm{m}^{3}}$ $\mathrm{P}= 4.0\times 10^{6}\ Pa$ $b.$ $K_{\mathrm{a}\mathrm{v}}=\displaystyle \frac{3}{2}kT=\frac{3}{2}(1.38\times 10^{-23}\ \mathrm{J}/\mathrm{K})(273.15+295 \mathrm{K})$ $=1.18\times 10^{-20}\ \mathrm{J}$ $c.$ If the volume doubles, with all other factors constant, interpreting 17-5, $\displaystyle \mathrm{P}=\frac{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}}{\mathrm{V}}$ P is inversely proportional to V, so it will halve (decrease by a factor of 2). Kinetic energy relies only on absolute temperature. If T remains the same, so does $\mathrm{K}_{\mathrm{a}\mathrm{v}}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.