Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 17 - Phases and Phase Changes - Problems and Conceptual Exercises - Page 604: 14

Answer

$\mathrm{a}.\quad 3.9\times 10^{24}$ atoms $\mathrm{b}.\quad $increase factor: $1.26$

Work Step by Step

Use $ \quad PV=NkT \quad (17-2)$ to express $N=\displaystyle \frac{PV}{kT}$ ($k =1.38\times 10^{-23}\ \mathrm{J}/\mathrm{K}$ is Boltzmann's constant.) --- $V_{sphere}=\displaystyle \frac{4}{3}\pi r^{3},\ \quad \mathrm{T}_{\mathrm{K}}=273.15+\mathrm{T}_{\mathrm{C}}.$ $a.$ $N=\displaystyle \frac{PV}{kT}=\frac{P(\frac{4}{3}\pi r^{3})}{kT}$ $=\displaystyle \frac{(2.4\times 10^{5}\ \mathrm{P}\mathrm{a})[\frac{4}{3}\pi(0.25\ \mathrm{m})^{3}]}{(1.38\times 10^{-23}\ \mathrm{J}/\mathrm{K})(273.15+18\ \mathrm{K})}$ $=3.9\times 10^{24}$ atoms $\mathrm{b}.$ From $N=\displaystyle \frac{PV}{kT}$, when P and T are fixed, N is proportional to V. If N increases by factor 2, V increases by factor 2. $\mathrm{V}_{\mathrm{f}}=2\mathrm{V}_{\mathrm{i}}$ $\displaystyle \frac{4}{3}\mathrm{r}_{\mathrm{f}}^{3}\pi=2(\frac{4}{3}\mathrm{r}_{\mathrm{i}}^{3}\pi)\qquad$ solve for $\mathrm{r}_{\mathrm{f}}$ $\mathrm{r}_{\mathrm{f}}^{3}=2\mathrm{r}_{\mathrm{i}}^{3}$ $\mathrm{r}_{\mathrm{f}}=2^{1/3}\mathrm{r}_{\mathrm{i}}$ $\mathrm{r}_{\mathrm{f}}=1.26\mathrm{r}_{\mathrm{i}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.