Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 32 - Elementary Particles - General Problems - Page 945: 45

Answer

$$N=4.44 \times 10^{5} \mathrm{rev}$$ $$d \approx 1.2 \times 10^{10} \mathrm{m}$$ $$t=4.0 \times 10^{1} \mathrm{s}$$

Work Step by Step

$\text{These protons will be moving at essentially speed of the light for entire time of}$ $\text{acceleration.}$ $\text{The number of revolutions is }$ $$\frac{\mathrm {the\ total\ gain\ in\ energy} }{\mathrm{the\ energy\ gain\ per\ revolution}}$$ $\text{Then the distance is }$ $\text{the number of revolutions} \times \text{the circumference of the ring}$ $\text{, and the time is }$ $$\frac{\mathrm {the\ distance\ of\ travel\ } }{\mathrm{the\ speed\ of\ the\ protons}}$$ $Then$ $$N=\frac{\Delta E}{\Delta E / \mathrm{rev}}=\frac{\left(4.0 \times 10^{12} \mathrm{eV}-450 \times 10^{9} \mathrm{eV}\right)}{8.0 \times 10^{6} \mathrm{eV} / \mathrm{rev}}=4.44 \times 10^{5} \mathrm{rev}$$ $$d=N(2 \pi R)=\left(4.44 \times 10^{5}\right) 2 \pi\left(4.3 \times 10^{3} \mathrm{m}\right)=$$$$1.199 \times 10^{10} \mathrm{m} \approx 1.2 \times 10^{10} \mathrm{m}$$ $$t=\frac{d}{c}=\frac{1.199 \times 10^{10} \mathrm{m}}{3.00 \times 10^{8} \mathrm{m} / \mathrm{s}}=$$ $$=4.0 \times 10^{1} \mathrm{s}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.