Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 8 - Dynamics II: Motion in a Plane - Exercises and Problems - Page 212: 33

Answer

a) $\omega=\sqrt{\dfrac{g}{L\sin\theta}}$ b) $71.6\;\rm rpm$

Work Step by Step

a) First, we need to draw the force diagram of the object. The net force exerted on the object in the $x$-direction, which is the radial direction of rotation, is given by $$\sum F_r=T\cos\theta =ma_r=m\dfrac{v^2}{R}$$ We know that $v=\omega R$; $$T\cos\theta =m\dfrac{(\omega R)^2}{R}=mR\omega^2$$ Thus, $$T=\dfrac{mR\omega^2 }{\cos\theta}\tag 1$$ Noting that $R$ here is given by $$\cos\theta =\dfrac{R}{L}$$ where $L$ is the length of the wire. Thus, $$R=L\cos\theta$$ Plugging into (1); $$T=\dfrac{mL\cos\theta\omega^2 }{\cos\theta}=mL\omega^2$$ $$T= mL\omega^2\tag 2 $$ Applying Newton's second law in the vertical direction. $$\sum F_y=T\sin\theta-mg=ma_y=m(0)=0$$ $$T\sin\theta=mg$$ Thus, $$T=\dfrac{mg}{\sin\theta}$$ Plugging into (2); $$\dfrac{ \color{red}{\bf\not}mg}{\sin\theta}= \color{red}{\bf\not}mL\omega^2 $$ $$\dfrac{ g}{\sin\theta}= L\omega^2 $$ Therefore, $$\boxed{\omega=\sqrt{\dfrac{g}{L\sin\theta}}}$$ ____________________________________________________ b) Plugging the given data into the boxed formula above to find the angular velocity of the rock. $$\omega=\sqrt{\dfrac{g}{L\sin\theta}}=\sqrt{\dfrac{9.8}{1\times \sin10^\circ}}=\bf 7.5\;\rm rad/s$$ $$\omega=\rm \dfrac{7.5\;\rm rad}{\rm 1\;s}\left(\dfrac{1\;rev}{2\pi\;rad}\right) \left(\dfrac{60\;s}{1\;min}\right) =\bf 71.6\;rev/min$$ Therefore, $$\omega=\rm \color{red}{\bf 71.6}\;rpm$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.