Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 6 - Dynamics I: Motion Along a Line - Exercises and Problems - Page 165: 72

Answer

a) See the answer below. b) $v_x =\sqrt{ L\left[\dfrac{2F_0 }{m}-\mu_0g \right] }$

Work Step by Step

a) We can use the chain rule to find the acceleration of the block (to prove the given formula). We know that $$a_x=\dfrac{dv_x}{dt}$$ Multiplying the right side by $dx/dx$; $$a_x=\dfrac{dv_x}{dt}\dfrac{dx}{dx}=\dfrac{dv_x}{dx}\dfrac{dx}{dt}$$ whereas $\dfrac{dx}{dt}=v_x$. So that $$\boxed{a_x=v_x\dfrac{dv_x}{dx}}\tag 1$$ b) Now we need to find the velocity expression as the block reaches $x=L$ from $x=0$. We know that the pushing force $F_0$ is constant but the kinetic friction force is not. $$\sum F_x=F_0-f_k=ma_x$$ $$F_0-\mu_kF_n=ma_x\tag 2$$ The net force exerted on the block in the vertical direction is zero. $$\sum F_y=F_n-mg=0$$ $$F_n=mg$$ Plugging into (2); $$F_0-\mu_kmg=ma_x $$ We know that $\mu_k=\mu_0\left(1-\dfrac{x}{L}\right)$ $$F_0-\mu_0\left(1-\dfrac{x}{L}\right)mg=ma_x $$ Solving for $a_x$; $$a_x=\dfrac{F_0}{m}-\mu_0g\left(1-\dfrac{x}{L}\right) \tag 3 $$ Now we need to integrate (1) to $dx$; $$\int a_x dx=\int \left(v_x\dfrac{dv_x}{dx}\right)dx=\int v_xdv_{x}$$ Plugging from (3); $$\int_0^x \left[\dfrac{F_0}{m}-\mu_0g\left(1-\dfrac{x}{L}\right) \right]dx =\int_0^{v_x} v_xdv_{x}=\dfrac{v_x^2}{2}$$ Thus, $$ \left[\dfrac{F_0x}{m}-\mu_0g\left(x-\dfrac{x^2}{2L}\right) \right] = \dfrac{v_x^2}{2}$$ $$ v_x^2= 2\left[\dfrac{F_0x}{m}-\mu_0g\left(x-\dfrac{x^2}{2L}\right) \right] $$ $$ v_x =\sqrt{ 2\left[\dfrac{F_0x}{m}-\mu_0g\left(x-\dfrac{x^2}{2L}\right) \right] }$$ Thus, the velocity at $x=L$ is $$ v_x =\sqrt{ 2\left[\dfrac{F_0L}{m}-\mu_0g\left(L-\dfrac{L^2}{2L}\right) \right] }$$ $$ v_x =\sqrt{ 2\left[\dfrac{F_0L}{m}-\mu_0g\left(L-\dfrac{L }{2 }\right) \right] }$$ $$ v_x =\sqrt{ 2\left[\dfrac{F_0L}{m}-\mu_0g \dfrac{L }{2 } \right] }$$ $$ \boxed{v_x =\sqrt{ L\left[\dfrac{2F_0 }{m}-\mu_0g \right] }}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.