Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 38 - Quantization - Exercises and Problems - Page 1152: 20

Answer

$E_1 = 2.05~MeV$ $E_2 = 8.22~MeV$ $E_3 = 18.5~MeV$

Work Step by Step

We can write a general expression for the energy levels: $E_n = \frac{n^2~h^2}{8~m~L^2}$ We can find the energy when $n = 1$: $E_1 = \frac{1^2~h^2}{8~m~L^2}$ $E_1 = \frac{(1)^2~(6.626\times 10^{-34}~J~s)^2}{(8)~(1.67\times 10^{-27}~kg)~(10\times 10^{-15}~m)^2}$ $E_1 = 3.286\times 10^{-13}~J$ $E_1 = (3.286\times 10^{-13}~J)(\frac{1~eV}{1.6\times 10^{-19}~J})$ $E_1 = 2.05\times 10^6~eV$ $E_1 = 2.05~MeV$ We can find the energy when $n = 2$: $E_2 = \frac{2^2~h^2}{8~m~L^2}$ $E_2 = \frac{(2)^2~(6.626\times 10^{-34}~J~s)^2}{(8)~(1.67\times 10^{-27}~kg)~(10\times 10^{-15}~m)^2}$ $E_2 = 1.3145\times 10^{-12}~J$ $E_2 = (1.3145\times 10^{-12}~J)(\frac{1~eV}{1.6\times 10^{-19}~J})$ $E_2 = 8.22\times 10^6~eV$ $E_2 = 8.22~MeV$ We can find the energy when $n = 3$: $E_3 = \frac{3^2~h^2}{8~m~L^2}$ $E_3 = \frac{(3)^2~(6.626\times 10^{-34}~J~s)^2}{(8)~(1.67\times 10^{-27}~kg)~(10\times 10^{-15}~m)^2}$ $E_3 = 2.9576\times 10^{-12}~J$ $E_3 = (2.9576\times 10^{-12}~J)(\frac{1~eV}{1.6\times 10^{-19}~J})$ $E_3 = 1.85\times 10^7~eV$ $E_3 = 18.5~MeV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.