Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 36 - Relativity - Exercises and Problems - Page 1100: 62

Answer

See the detailed answer below.

Work Step by Step

Let's start with the Lorentz transformation equation for space in $x$-direction. $$x'=\gamma(x-vt)\tag 1$$ and $$x=\gamma(x'+vt')\tag 2 $$ Plug $x'$ from (1) into (2), $$x=\gamma(\gamma \;x-\gamma\; vt+vt') $$ $$x=\gamma^2 \;x-\gamma^2\; vt+\gamma \;vt' $$ $$\dfrac{x}{\gamma^2}= x- vt+\dfrac{vt'}{\gamma} $$ where $\gamma=\left[1-\frac{v^2}{c^2}\right]^{-1/2}$, and hence, $\gamma^2=\left[1-\frac{v^2}{c^2}\right]^{-1}=\dfrac{1}{1-\frac{v^2}{c^2}}$; Thus, $$x\left[1-\frac{v^2}{c^2}\right]= x- vt+\dfrac{vt'}{\gamma} $$ $$ x-\frac{v^2x}{c^2} - x+ vt=\dfrac{vt'}{\gamma} $$ $$ \color{red}{\bf\not} v\left[ t-\frac{vx}{c^2} \right] =\dfrac{\color{red}{\bf\not} vt'}{\gamma} $$ Therefore, $$\boxed{t'=\gamma\left[ t-\frac{vx}{c^2} \right] }$$ To find $t$, we need to plug $x$ from (2) into (1), $$x'=\gamma(\gamma(x'+vt')-vt) =\gamma^2 x'+\gamma^2 vt'-\gamma vt$$ $$\dfrac{x'}{\gamma^2}= x'+ vt'-\dfrac{vt}{\gamma }$$ Plug $\gamma^2$ from above; $$ x' \left[1-\frac{v^2}{c^2}\right]= x'+ vt'-\dfrac{vt}{\gamma }$$ $$ x'-\frac{v^2x'}{c^2} - x'- vt'=-\dfrac{vt}{\gamma }$$ $$ -\frac{v^2x'}{c^2} - vt'=-\dfrac{vt}{\gamma }$$ Divide by $-v$; $$ \frac{v x'}{c^2} +t'=\dfrac{t}{\gamma }$$ Therefore, $$\boxed{t=\gamma\left[ t'+\frac{v x'}{c^2} \right]}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.