Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1052: 17

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ The crossover frequency in a simple RC high-pass filter circuit is at $V_R=V_C$, where the crossover frequency is given by $$\omega_c=2\pi f_c$$ So, $$f_c=\dfrac{\omega_c}{2\pi}$$ where $\omega_c=1/RC$, so $$f_c=\dfrac{1}{2\pi RC}$$ Plug the known; $$f_c=\dfrac{1}{2\pi (100)(1.59\times 10^{-6})}=\color{red}{\bf 1001}\;\rm Hz$$ $$\color{blue}{\bf [b]}$$ Recalling that the voltage resistor in such circuits is given by $$V_R= \dfrac{\varepsilon_0 R}{\sqrt{R^2+X_C^2}}$$ where $X_C=1/\omega C$ $$V_R= \dfrac{\varepsilon_0 R}{\sqrt{R^2+\left[\dfrac{1}{\omega C}\right]^2}}$$ $$V_R= \dfrac{\varepsilon_0}{\sqrt{1+\left[\dfrac{1}{\omega C R}\right]^2}}$$ where $1/RC=\omega_c$ $$V_R= \dfrac{\varepsilon_0}{\sqrt{1+\left[\dfrac{\omega_c}{\omega }\right]^2}}$$ where $\omega=2\pi f$, and $\varepsilon_0=5$ V. so $$\boxed{V_R= \dfrac{5}{\sqrt{1+\left[\dfrac{f_c }{f }\right]^2}}}$$ $\bullet\Rightarrow$ when $f=\frac{1}{2}f_c$ $$ V_R= \dfrac{5}{\sqrt{1+\left[\dfrac{ \color{red}{\bf\not} f_c }{\frac{1}{2} \color{red}{\bf\not} f_c}\right]^2}} = \sqrt5$$ $$V_R=\color{red}{\bf 2.24}\;\rm V$$ $\bullet\Rightarrow$ when $f= f_c$ $$ V_R= \dfrac{5}{\sqrt{1+\left[\dfrac{ \color{red}{\bf\not} f_c }{ \color{red}{\bf\not} f_c}\right]^2}}=5/\sqrt2$$ $$V_R=\color{red}{\bf 3.54}\;\rm V$$ $\bullet\Rightarrow$ when $f= 2f_c$ $$ V_R= \dfrac{5}{\sqrt{1+\left[\dfrac{ \color{red}{\bf\not} f_c }{ 2\color{red}{\bf\not} f_c}\right]^2}}= 2\sqrt5$$ $$V_R=\color{red}{\bf 4.47}\;\rm V$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.