Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 34 - Electromagnetic Fields and Waves - Exercises and Problems - Page 1031: 42

Answer

$ ( -\color{black}{\bf 256}\;\hat i +\color{black}{\bf 138}\;\hat j -\color{black}{\bf 177}\;\hat k )\;\rm W/m^2$

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the electric field is always perpendicular to the magnetic field. So the dot product at any point must be zero, $$\vec E\cdot \vec B=0$$ Hence, $$(200\;\hat i+300\;\hat j-50\;\hat k)\cdot B_0(7.3\;\hat i-7.3\;\hat j+a\;\hat k)\times 10^{-6}=0$$ Recalling that $\hat i\cdot \hat i=1$, and $\hat i\cdot \hat j=0$, so $$(200\times 7.3 )-(300\times 7.3) -(50a) =0$$ Thus, $$a=\color{red}{\bf -14.6}$$ Recalling that $$E=cB$$ Hence, $$\sqrt{(200\;\hat i)^2+(300\;\hat j)^2+(-50\;\hat k)^2}=c\sqrt{ B_0^2[(7.3\;\hat i)^2+(-7.3\;\hat j)^2+(-14.6\;\hat k)^2]\times (10^{-6})^2}$$ $$\sqrt{(200)^2+(300)^2+(50)^2}=cB_0\sqrt{ [(7.3)^2+(7.3)^2+(14.6)^2]\times (10^{-6})^2}$$ Thus, $$B_0=\dfrac{\sqrt{(200)^2+(300)^2+(50)^2}}{c\sqrt{ [(7.3)^2+(7.3)^2+(14.6)^2]\times (10^{-6})^2}}$$ Plug the known; $$B_0=\dfrac{\sqrt{(200)^2+(300)^2+(50)^2}}{(3\times 10^8)\sqrt{ [(7.3)^2+(7.3)^2+(14.6)^2]\times (10^{-6})^2}}$$ $$B_0=\color{red}{\bf 6.78\times 10^{-2}}\;\rm T$$ $$\color{blue}{\bf [b]}$$ The Poynting vector is given by $$\vec S=\dfrac{1}{\mu_0}\left[\vec E\times \vec B\right]\tag 1$$ Let's find $\vec E\times \vec B$; $$\vec E\times \vec B=(200\;\hat i+300\;\hat j-50\;\hat k)\times (7.3\;\hat i-7.3\;\hat j-14.6\;\hat k)(0.0678\times 10^{-6}) $$ $$\vec E\times \vec B=\\\left[ (200\;\hat i\times 7.3\;\hat i)+(200\;\hat i\times -7.3\;\hat j) +(200\;\hat i\times -14.6\;\hat k)\\+(300\;\hat j\times 7.3\;\hat i) +(300\;\hat j\times -7.3\;\hat j)+(300\;\hat j\times -14.6\;\hat k)\\ +(-50\;\hat k\times 7.3\;\hat i)+(-50\;\hat k\times -7.3\;\hat j)+(-50\;\hat k\times -14.6\;\hat k)\right]\\(0.0678\times 10^{-6}) $$ Recalling that $\hat i\times \hat i=\hat j\times \hat j=\hat k\times \hat k=0$; $$\vec E\times \vec B=0-1460\;\hat k+2920\;\hat j-2190\;\hat k+0-4380\;\hat i-365\;\hat j-365\;\hat i+0$$ $$\vec E\times \vec B=(-4745\;\hat i +2555\;\hat j -3285\;\hat k)(0.0678\times 10^{-6})$$ Plug into (1); $$\vec S=\dfrac{(0.0678\times 10^{-6})}{(4\pi\times 10^{-7})}\left[ -4745\;\hat i +2555\;\hat j -3285\;\hat k \right] $$ $$\vec S=0.054\left[ -4745\;\hat i +2555\;\hat j -3285\;\hat k \right]$$ $$\vec S= ( -\color{red}{\bf 256}\;\hat i +\color{red}{\bf 138}\;\hat j -\color{red}{\bf 177}\;\hat k )\;\rm W/m^2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.