Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 33 - Electromagnetic Induction - Exercises and Problems - Page 999: 44

Answer

${\bf 40}\;\rm nA$

Work Step by Step

We have here a small loop and a changing flux due to the change in the current in the bigger loop, so we must have an induced current and an induced emf. We know that the induced current is given by $$I_{\rm small}=\dfrac{\varepsilon_{\rm small}}{R_{\rm small}}\tag 1$$ We know that the induced emf $\varepsilon$ is given by $$\varepsilon_{\rm small}=\left|\dfrac{d\Phi_{\rm big}}{dt}\right|\tag 2$$ where $ \Phi =\vec A\cdot \vec B =AB\cos\theta=AB $ since $\theta=0^\circ$, so for $$d\Phi =A_{\rm small} dB_{\rm big}$$ We used the area of the small loop area not that of the bigger loop since we need that the flux change inside the smaller loop. where $B_{\rm loop}= \dfrac{\mu_0I_{\rm big}}{2r_{\rm big}}$ $$d\Phi_{\rm big} =\pi r_{\rm small}^2\dfrac{\mu_0dI_{\rm big}}{2r_{\rm big}}$$ Plug into (2), $$\varepsilon_{\rm small}=\left|\dfrac{\pi r_{\rm small}^2\dfrac{\mu_0dI_{\rm big}}{2r_{\rm big}}}{dt}\right|$$ $$\varepsilon_{\rm small}=\dfrac{ \pi \mu_0 r_{\rm small}^2}{2r_{\rm big}}\left|\dfrac{dI_{\rm big}}{dt}\right|$$ Plug into (1), $$I_{\rm small}=\dfrac{\dfrac{ \pi \mu_0 r_{\rm small}^2}{2r_{\rm big}}\left|\dfrac{dI_{\rm big}}{dt}\right|}{R_{\rm small}} $$ $$I_{\rm small}= \dfrac{ \pi \mu_0 r_{\rm small}^2}{2r_{\rm big}R_{\rm small}} \left|\dfrac{(I_2-I_1)_{\rm big}}{\Delta t}\right| $$ Plug the known; $$I_{\rm small}= \dfrac{ \pi (4\pi\times 10^{-7}) (0.001)^2}{2(0.05) (0.02)} \left|\dfrac{(-1-1) }{0.10}\right| $$ $$I_{\rm small}\approx \color{red}{\bf 40}\;\rm nA$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.