Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 33 - Electromagnetic Induction - Exercises and Problems - Page 998: 40

Answer

$7.44\times10^{-3}\cos(120\pi t)$

Work Step by Step

We have here a coil and a changing flux due to the change in the current of the solenoid, so we must have an induced current and an induced emf. We know that the induced current is given by $$I_{\rm coil}=\dfrac{\varepsilon_{\rm coil}}{R}\tag 1$$ We know that the induced emf $\varepsilon$ is given by $$\varepsilon_{\rm coil}=\left|\dfrac{d\Phi_{\rm solenoid}}{dt}\right|\tag 2$$ where $ \Phi =\vec A\cdot \vec B =AB\cos\theta=AB $ since $\theta=0^\circ$, so for $$d\Phi =A_{\rm solenoid } dB_{\rm solenoid}$$ We used the area of the solenoid not that of the loop since we assumed that the solenoid is an ideal one and the flux outside its area is zero. where $B_{\rm solenoid}=\mu_0 N_{\rm solenoid}I_{\rm solenoid}/l$ $$d\Phi_{\rm solenoid} =A_{\rm solenoid}\dfrac{\mu_0N_{\rm solenoid}dI_{\rm solenoid}}{l}$$ and for $N$ turns of the coil. $$d\Phi_{\rm solenoid} =\pi N_{\rm coil} r^2_{\rm solenoid}\dfrac{\mu_0N_{\rm solenoid}dI_{\rm solenoid}}{l}$$ Plug into (2), $$\varepsilon_{\rm coil}=\dfrac{\pi N_{\rm coil} r^2_{\rm solenoid}\mu_0N_{\rm solenoid}}{l}\left|\dfrac{dI_{\rm solenoid}}{dt}\right| $$ where $I_{\rm solenoid }=0.5\sin(2\pi f t)$ $$\varepsilon_{\rm coil}=\dfrac{\pi N_{\rm coil} r^2_{\rm solenoid}\mu_0N_{\rm solenoid}}{l}\left|\dfrac{d }{dt}0.5\sin(2\pi f t)\right| $$ $$\varepsilon_{\rm coil}=\dfrac{\pi N_{\rm coil} r^2_{\rm solenoid}\mu_0N_{\rm solenoid}}{l}\left| 0.5(2\pi f)\cos(2\pi f t)\right| $$ $$\varepsilon_{\rm coil}=\dfrac{\pi^2 f N_{\rm coil} r^2_{\rm solenoid}\mu_0N_{\rm solenoid}}{l}\left| \cos(2\pi f t)\right| $$ Plug into (1), $$I_{\rm coil}=\dfrac{\dfrac{\pi^2 f N_{\rm coil} r^2_{\rm solenoid}\mu_0N_{\rm solenoid}}{l}\left| \cos(2\pi f t)\right| }{R} $$ Plug the known; $$I_{\rm coil}=\dfrac{\dfrac{\pi^2 (60)(50)(0.01)^2(4\pi\times 10^{-7})(200)}{0.20} \cos(2\pi \times 60 t) }{0.50} $$ $$\boxed{I_{\rm coil}=7.44\times10^{-3}\cos(120\pi t)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.