Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 31 - Fundamentals of Circuits - Exercises and Problems - Page 920: 80

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know for a charging capacitor that $$Q=Q_{\rm max}\left(1-e^{-t/RC}\right)$$ Recalling that $Q=C\Delta V_C$, so $$C\Delta V_C=C(\Delta V_C)_{\rm max}\left(1-e^{-t/RC}\right)$$ where $(\Delta V_C)_{\rm max}=\varepsilon$, see the given graph. $$ \Delta V_C=\varepsilon \left(1-e^{-t/RC}\right)$$ Let's assume that at $t=0$, $ \Delta V_C=V_{\rm off}$ and at the end of the period of oscillation, $ \Delta V_C=V_{\rm on}$; where the period is given by $$T=t_{\rm on}-t_{\rm off}\tag 1$$ Hence $$ V_{\rm off}=\varepsilon \left(1-e^{-t_{\rm off}/RC}\right)$$ Solving for $t_{\rm off}$; $$ V_{\rm off}=\varepsilon -\varepsilon e^{-t_{\rm off}/RC} $$ $$\dfrac{\varepsilon -V_{\rm off}}{\varepsilon}= e^{-t_{\rm off}/RC} $$ Thus, $$\ln\left[\dfrac{\varepsilon -V_{\rm off}}{\varepsilon}\right]= \dfrac{-t_{\rm off}}{RC} $$ $$t_{\rm off} =-RC\ln\left[\dfrac{\varepsilon -V_{\rm off}}{\varepsilon}\right] $$ $$t_{\rm off} = RC\ln\left[\dfrac{\varepsilon}{\varepsilon -V_{\rm off}}\right] \tag 2$$ By the same approach, $$t_{\rm on} = RC\ln\left[\dfrac{\varepsilon}{\varepsilon -V_{\rm on}}\right] \tag 3$$ Plug (2) and (3) into (1), $$T=RC\ln\left[\dfrac{\varepsilon}{\varepsilon -V_{\rm on}}\right]-RC\ln\left[\dfrac{\varepsilon}{\varepsilon -V_{\rm off}}\right]$$ $$T=RC\left(\ln\left[\dfrac{\varepsilon}{\varepsilon -V_{\rm on}}\right]- \ln\left[\dfrac{\varepsilon}{\varepsilon -V_{\rm off}}\right]\right)$$ $$T=RC \ln\left[\dfrac{\dfrac{\varepsilon}{\varepsilon -V_{\rm on}}}{\dfrac{\varepsilon}{\varepsilon -V_{\rm off}}}\right] $$ $$\boxed{T=RC \ln\left[\dfrac{ \varepsilon -V_{\rm off}}{\varepsilon -V_{\rm on}}\right] }$$ $$\color{blue}{\bf [a]}$$ Recalling that $T=1/f$, and using the boxed formula above, $$\dfrac{1}{f}=RC \ln\left[\dfrac{ \varepsilon -V_{\rm off}}{\varepsilon -V_{\rm on}}\right]$$ Hence, $$R=\dfrac{1}{fC \ln\left[\dfrac{ \varepsilon -V_{\rm off}}{\varepsilon -V_{\rm on}}\right]}$$ Plug the given; $$R=\dfrac{1}{(10)(10\times 10^{-6})\ln\left[\dfrac{90 -20}{90 -80}\right]}$$ $$R=\color{red}{\bf 5.12}\;\rm k\Omega$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.