Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 31 - Fundamentals of Circuits - Exercises and Problems - Page 920: 78

Answer

See the detailed answer below.

Work Step by Step

Just after closing the switch, the current is $I_{max}$ and decreases until it reaches zero when the capacitor is fully charged and $Q=Q_{\rm max}$. To analyze the circuit, we can use Kirchhoff's loop law. Starting from the left lower corner and moving clockwise, $$\varepsilon-IR-\dfrac{Q}{C}=0$$ Recalling that $I=dQ/dt$, $$\varepsilon-\dfrac{dQ}{dt}R-\dfrac{Q}{C}=0$$ $$\varepsilon-\dfrac{Q}{C}= \dfrac{dQ}{dt}R$$ $$dQ=\dfrac{\varepsilon-\dfrac{Q}{C}}{R}dt$$ $$dQ=\dfrac{ \varepsilon C-Q }{CR}dt$$ $$CRdQ=( \varepsilon C-Q )dt$$ Hence, $$\dfrac{dQ}{ \varepsilon C-Q}=\dfrac{dt}{CR}$$ Integrating both sides: $$\int_0^{Q }\dfrac{dQ}{ \varepsilon C-Q}=\int_0^t\dfrac{dt}{CR}$$ $$-\ln(\varepsilon C-Q)\bigg|_0^Q= \dfrac{t}{CR}\bigg|_0^t$$ $$-\ln(\varepsilon C-Q) +\ln(\varepsilon C)= \dfrac{t}{CR} $$ $$ \ln(\varepsilon C-Q) -\ln(\varepsilon C)= -\dfrac{t}{CR} $$ Hence, $$\ln\left[ \dfrac{\varepsilon C-Q}{\varepsilon C}\right]= -\dfrac{t}{CR} $$ Thus, $$ \dfrac{\varepsilon C-Q}{\varepsilon C} = e^{-t/CR }$$ $$ \varepsilon C-Q =\varepsilon C e^{-t/CR }$$ Therefore, $$Q= \varepsilon C-\varepsilon C e^{-t/CR }$$ $$Q= \varepsilon C(1-e^{-t/CR })$$ where $RC=\tau$, and $Q_{\rm max}= \varepsilon C$, $$\boxed{Q= Q_{\rm max}(1-e^{-t/\tau})}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.