Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 31 - Fundamentals of Circuits - Exercises and Problems - Page 919: 72

Answer

$62.5\;\rm \mu J$

Work Step by Step

First, we need to find the charge stored in the capacitor before connecting it to the two resistors. $$\Delta V_C=\dfrac{Q}{C}$$ So, $$Q=C\Delta V_C\tag 1$$ After connecting the capacitor in series to the two resistors, all its stored energy will be dissipated there. This energy is given by $$U_C=\dfrac{Q^2}{2C}\tag 2$$ We know that one resistor ($100\;\Omega$) is four times the other ($25\;\Omega$), $$R_2=4R_1\tag 3$$ and the energy dissipated in the resistor is given by $$U_{\rm diss}=I^2R\tag 4$$ The current is a function in time but it must be the same in both resistors, so $$$$ Hence, $$\dfrac{(U_{\rm diss})_2}{(U_{\rm diss})_1}=\dfrac{I^2R_2}{I^2R_1}=4$$ $$(U_{\rm diss})_2=4(U_{\rm diss})_1\tag 5$$ $$(U_{\rm diss})_1+(U_{\rm diss})_2=U_C$$ Plug from (2), $$(U_{\rm diss})_1+(U_{\rm diss})_2=\dfrac{Q^2}{2C}$$ Plug from (1), $$(U_{\rm diss})_1+(U_{\rm diss})_2=\dfrac{C^2(\Delta V_C)^2}{2C}$$ $$(U_{\rm diss})_1+(U_{\rm diss})_2=\frac{1}{2 }C (\Delta V_C)^2$$ Plug from (5), $$(U_{\rm diss})_1+4(U_{\rm diss})_1=\frac{1}{2 }C (\Delta V_C)^2$$ $$5(U_{\rm diss})_1=\frac{1}{2 }C (\Delta V_C)^2$$ $$ (U_{\rm diss})_1=\frac{1}{10 }C (\Delta V_C)^2$$ Plug the known; $$ (U_{\rm diss})_1=\frac{1}{10 }(0.25\times 10^{-6}) (50)^2$$ $$ (U_{\rm diss})_1=\color{red}{\bf 6.25\times 10^{-5}}\;\rm J$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.