Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 31 - Fundamentals of Circuits - Exercises and Problems - Page 919: 68

Answer

a) ${\bf 6.93}\;\rm ms$ b) ${\bf 3.47}\;\rm ms$

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the discharge of a capacitor through a resistor is given by $$Q=Q_0e^{-t/\tau}\tag 1$$ So we need to find the time when $Q=\frac{1}{2}Q_0$ $$\frac{1}{2}\color{red}{\bf\not} Q_0=\color{red}{\bf\not} Q_0e^{-t/\tau}$$ Hence, $$\ln \left( \frac{1}{2}\right)=\dfrac{-t}{\tau}$$ Thus, $$t=-\tau \ln \left( \frac{1}{2}\right)$$ Plug the given; $$t=-10\ln \left( \frac{1}{2}\right)$$ $$t=\color{red}{\bf 6.93}\;\rm ms$$ $$\color{blue}{\bf [b]}$$ when the energy stored to half its initial value, where$ U=Q^2/2C$ gives the energy in the capacitor. So, $$Q_0=\sqrt{2CU_0}$$ So, when $U_f=0.5U$ $$\dfrac{Q}{Q_0}=\sqrt{\dfrac{\color{red}{\bf\not} 2\color{red}{\bf\not} CU}{\color{red}{\bf\not} 2\color{red}{\bf\not} CU_0}}=\sqrt{\dfrac{ U}{ U_0}}$$ where $U=\frac{1}{2}U_0$, hence $$\dfrac{Q}{Q_0}=\sqrt{\dfrac{1}{2}}$$ Thus, $$Q=\dfrac{Q_0}{\sqrt{2}}$$ Plug into (1), $$\dfrac{\color{red}{\bf\not} Q_0}{\sqrt{2}}=\color{red}{\bf\not} Q_0e^{-t/\tau}$$ Hence, $$\ln \left( \frac{1}{\sqrt{2}}\right)=\dfrac{-t}{\tau}$$ Hence, $$t=-\tau\ln \left( \frac{1}{\sqrt{2}}\right)=-10\ln \left( \frac{1}{\sqrt{2}}\right)$$ $$t=\color{red}{\bf 3.47}\;\rm ms$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.