Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 28 - The Electric Potential - Exercises and Problems - Page 835: 45

Answer

a) $0.85\;\rm m$ b) $2.55\;\rm m$

Work Step by Step

$$\color{blue}{\bf [a]}$$ The energy is conserved, so $$K_i+U_{ig}+U_{ie}=K_f+U_{fg}+U_{fe}$$ at the highest point the bead stops before falling back, so $K_f=0$ $$K_i+U_{ig}+U_{ie}=0+U_{fg}+U_{fe}$$ At the bottom, $y=0$, so $U_{ig}=0$, and $V_i=0$, so $U_{ie}=0$ $$K_i+0+0= U_{fg}+U_{fe}$$ $$ \frac{1}{2} mv_0^2= mgy_1+qV_f$$ Recall that, $V_f=Es$ whereas $s$ here is as same as $y_1$. $$ \frac{1}{2} mv_0^2= mgy_1+q Ey_1$$ Recall that the electric field inside a two-plate capacitor is constant and uniform and is given by $E=\Delta V_C/d$ $$ \frac{1}{2} mv_0^2= mgy_1+\dfrac{q y_1( V_{\rm top}-V_{\rm bottom})}{d}$$ $$ \frac{1}{2} mv_0^2= mgy_1+\dfrac{q y_1( V_{\rm top}-0)}{d}$$ $$ \frac{1}{2} mv_0^2= y_1\left[ mg +\dfrac{q V_{\rm top} }{d}\right]$$ $$ y_1=\frac{ mv_0^2}{2\left[ mg +\dfrac{q V_{\rm top} }{d}\right]} $$ Plug the known; $$ y_1=\frac{ (1\times 10^{-3})(5)^2}{2\left[ (1\times 10^{-3})(9.8)+\dfrac{(4.9\times 10^{-9})(3\times 10^6)}{3}\right]} $$ $$y_1=\color{red}{\bf 0.85}\;\rm m$$ $$\color{blue}{\bf [b]}$$ By the same approach, but changing the sign of the top plate charge. $$ y_1=\frac{ mv_0^2}{2\left[ mg +\dfrac{q V_{\rm top} }{d}\right]} $$ Plug the known; $$ y_1=\frac{ (1\times 10^{-3})(5)^2}{2\left[ (1\times 10^{-3})(9.8)+\dfrac{(4.9\times 10^{-9})(-3\times 10^6)}{3}\right]} $$ $$y_1=\color{red}{\bf 2.55}\;\rm m$$ In both cases, the bead will not hit the ceiling.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.