Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 27 - Gauss's Law - Exercises and Problems - Page 809: 59

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We are given that $$E=E_{max}\left( \dfrac{r^4}{R^4}\right)$$ So, $E=E_{max}$ when $ \dfrac{r^4}{R^4}=1$. In other words, $E=E_{max}$ when $r=R$ and hence in this case, $$\boxed{E_{max}=\dfrac{1}{4\pi \epsilon_0}\dfrac{Q}{R^2}}$$ $$\color{blue}{\bf [b]}$$ We can use Gauss's law when $r\lt R$, $$\oint \vec Ed\vec A=\dfrac{Q_{in}}{\epsilon_0}$$ Substitute $E$ from the given $$E_{max}\left( \dfrac{r^4}{R^4}\right)(4\pi r^2)=\dfrac{Q_{in}}{\epsilon_0}$$ Substitute $E_{max}$ from the boxed formula above, $$\dfrac{1}{4\pi \epsilon_0}\dfrac{Q}{R^2}\left( \dfrac{r^4}{R^4}\right)(4\pi r^2)=\dfrac{Q_{in}}{\epsilon_0}$$ $$ \dfrac{Q}{\epsilon_0 }\left( \dfrac{r^6}{R^6}\right) =\dfrac{Q_{in}}{\epsilon_0}$$ Hence, $$Q_{in}=Q\left( \dfrac{r^6}{R^6}\right) \tag 1$$ Now we need to find $Q_{in}$ in terms of $\rho$, $$dq=\rho dV$$ where$\rho$ is the volume charge density and is a function in $r$, $dV$ is the volume of a spherical shell of radius $r$, and thickness $dr$. Hence, $dV=(4\pi r^2) dr$. Hence, $$dq=\rho (4\pi r^2) dr$$ Integrating; $$\int_0^{Q_{in}}dq=\int \rho (4\pi r^2) dr$$ $$Q_{in}=4\pi \int \rho r^2 dr$$ Substituting from (1), $$Q\left( \dfrac{r^6}{R^6}\right) =4\pi \int \rho r^2 dr$$ $$Q\left( \dfrac{r^6}{4\pi R^6}\right) =\int \rho r^2 dr$$ Taking the first derivative for both sides of $d/dr$ $$Q\left( \dfrac{6r^5}{4\pi R^6}\right) =\dfrac{d}{dr}\left[ \int \rho r^2 dr\right]$$ $$Q\left( \dfrac{3r^5}{2\pi R^6}\right) = \rho r^2 $$ Therefore, $$\boxed{\rho= \dfrac{3Qr^3}{2\pi R^6} }$$ $$\color{blue}{\bf [c]}$$ Using the same approach we used above for a thin spherical shell of radius $r$, thickness $dr$, $$dq=\rho dV=\rho (4\pi r^2 dr)$$ Integrating, when $r\geq R$ $$\int_0^{Q_{in}}dq = 4\pi \int_0^R\rho r^2 dr $$ substituting $\rho$ from the boxed formula above, $$Q_{in} = 4\pi \int_0^R \dfrac{3Qr^3}{2\pi R^6} r^2 dr $$ $$Q_{in} = \dfrac{ 6Q}{ R^6} \int_0^R r^5 dr $$ $$Q_{in} = \dfrac{ 6Q}{ R^6} \dfrac{ r^6 }{6}\bigg|_0^R$$ $$Q_{in} = \dfrac{ QR^6}{ R^6} =Q$$ which is the total charge of the sphere.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.