Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 26 - The Electric Field - Exercises and Problems - Page 777: 43

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the electric field of a thin charged ring, at some point of distance $x$ from its axis, is given by $$E_x=\dfrac{1}{4\pi\epsilon_0}\dfrac{xQ}{(x^2+R^2)^{3/2}}$$ where $R$ is the radius of the ring, see the figure below. If the axis of the ring lies on $z$-direction, so $$E_z=\dfrac{1}{4\pi\epsilon_0}\dfrac{zQ}{(z^2+R^2)^{3/2}}\tag 1$$ We know that the electric field will be maximum when $dE/dz=0$, so we need to take the derivative relative to $dz$. $$\dfrac{dE}{dz} =\dfrac{d }{dz}\left[ \dfrac{1}{4\pi\epsilon_0}\dfrac{zQ}{(z^2+R^2)^{3/2}}\right]=0$$ where $Q/4\pi \epsilon_0=\rm constant$ $$ \dfrac{d }{dz}\left[ \dfrac{z }{(z^2+R^2)^{3/2}}\right]=0$$ $$ \dfrac{ (z^2+R^2)^{3/2}-z(2z)(\frac{3}{2})(z^2+R^2)^{1/2} }{(z^2+R^2)^{5/2}} =0$$ Thus, $$ (z^2+R^2)^{3/2}-3z^2(z^2+R^2)^{1/2} =0$$ Divide by $(z^2+R^2)^{1/2} $; $$ (z^2+R^2) -3z^2 =0$$ Hence, $$ 2z^2 =R^2$$ $$z=\pm\sqrt{\dfrac{R^2}{2}}=\pm \dfrac{R}{\sqrt{2}}$$ $$\boxed{x=\pm \dfrac{R}{\sqrt{2}}}$$ $$\color{blue}{\bf [b]}$$ To find the electric field strength at this point, we need to plug $|z|=R/\sqrt2$ into (1), $$E_z=\dfrac{1}{4\pi\epsilon_0}\dfrac{RQ}{\sqrt2\left(\dfrac{R^2}{2}+R^2\right)^{3/2}} $$ $$E_z=\dfrac{1}{4\pi\epsilon_0}\dfrac{RQ}{\sqrt2\left(\dfrac{3R^2}{2} \right)^{3/2}}=\dfrac{1}{4\pi\epsilon_0}\dfrac{RQ}{ (3)^{3/2} (2)^{-3/2}\sqrt{2}R^3 }$$ $$E_z= \dfrac{1}{4\pi\epsilon_0}\dfrac{ Q}{ 3\sqrt{3} (2)^{-1}R^2 }$$ $$\boxed{E_z= \dfrac{1}{4\pi\epsilon_0}\dfrac{2 Q}{ 3\sqrt{3} R^2 }}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.