Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 26 - The Electric Field - Exercises and Problems - Page 777: 35

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ First, we need to sketch the problem, as seen below. From the geometry of the figure below, we can see that: $\bullet$ $\theta_1=\theta_2=\theta$ $\bullet$ $\theta_3=0^\circ$ $\bullet$ $r_1=r_2=\sqrt{x^2+d^2}$ $\bullet$ $\sin\theta=\dfrac{d}{r}=\dfrac{d}{ \sqrt{x^2+d^2}}$ $\bullet$ $\cos\theta=\dfrac{x}{r}=\dfrac{x}{\sqrt{x^2+d^2}}$ We will ignore the charge signs and focus on the electric field components' directions. Thus, the electric field exerted by $q_1$ at a point at a distance of $x$, as seen below, is given by $$E_1=\dfrac{kq_1}{r_1^2}\left(-\cos\theta\;\hat i+\sin\theta\;\hat j\right)$$ Plug the known; $$E_1=\dfrac{kq}{(x^2+d^2)}\left(\dfrac{-x}{\sqrt{x^2+d^2}}\;\hat i+\dfrac{d}{ \sqrt{x^2+d^2}}\;\hat j\right)$$ $$E_1=\dfrac{kq}{\left(x^2+d^2\right)^{3/2}}\left(-x\;\hat i+d\;\hat j\right)\tag 1$$ The electric field by $q_2$ at the same point is given by $$E_2=\dfrac{kq_2}{r_2^2}\left(-\cos\theta\;\hat i-\sin\theta\;\hat j\right)$$ Plug the known; $$E_2=\dfrac{kq}{(x^2+d^2)}\left(\dfrac{-x}{\sqrt{x^2+d^2}}\;\hat i-\dfrac{d}{ \sqrt{x^2+d^2}}\;\hat j\right)$$ $$E_2=\dfrac{kq}{\left(x^2+d^2\right)^{3/2}}\left(-x\;\hat i-d\;\hat j\right)\tag 2$$ The electric field by $q_3$ at the same point is given by $$E_3=\dfrac{kq_3}{r_3^2}\left(\cos0^\circ\;\hat i+\sin0^\circ\;\hat j\right)$$ Plug the known; $$E_3=\dfrac{2kq}{x^2}\;\hat i\tag 3$$ Thus, the net electric field is given by $$E_{net}=E_1+E_2+E_3$$ Plug from (1), (2), and (3), $$E_{net}=\dfrac{kq}{\left(x^2+d^2\right)^{3/2}}\left(-x\;\hat i+d\;\hat j\right)+\dfrac{kq}{\left(x^2+d^2\right)^{3/2}}\left(-x\;\hat i-d\;\hat j\right)+\dfrac{2kq}{x^2}\;\hat i$$ $$E_{net}=\dfrac{-2kqx}{\left(x^2+d^2\right)^{3/2}} \;\hat i +\dfrac{2kq}{x^2}\;\hat i$$ $$E_{net}=2kq\left[ \dfrac{- x}{\left(x^2+d^2\right)^{3/2}} +\dfrac{1}{x^2}\right]\;\hat i$$ $$E_{net}=2kq\left[ \dfrac{1}{x^2}-\dfrac{ x}{\left(x^2+d^2\right)^{3/2}} \right]\;\hat i$$ And for more general cases, $$\boxed{E_{net}=\dfrac{2q}{4\pi \epsilon_0}\left[ \dfrac{1}{x^2}-\dfrac{ x}{\left(x^2+d^2\right)^{3/2}} \right]\;\hat i}$$ $$\color{blue}{\bf [b]}$$ when $x$ decreases, $x\lt \lt d$, using the boxed formula above, $$ E_{net}=\dfrac{2q}{4\pi \epsilon_0}\left[ \dfrac{1}{x^2}-\dfrac{ x}{\left(x^2+d^2\right)^{3/2}} \right]\;\hat i$$ So, $$ E_{net}=\dfrac{2q}{4\pi \epsilon_0}\left[ \dfrac{1}{x^2}-\dfrac{ x}{d^3\left((x/d)^2+1\right)^{3/2}} \right]\;\hat i$$ where $(x/d)^2\approx 0$ $$ E_{net}=\dfrac{2q}{4\pi \epsilon_0}\left[ \dfrac{1}{x^2}-\dfrac{ x}{d^3 } \right]\;\hat i$$ and $x/d^3\approx 0$ as well, $$\boxed{ E_{net}=\dfrac{2q}{4\pi \epsilon_0} \dfrac{1}{x^2} \;\hat i}$$ which is the same result if there is only charge $q_3=2q$ exerts an electric field at a distance of $x$ from it. when $x$ increases, $x\gt \gt d$, $$ E_{net}=\dfrac{2q}{4\pi \epsilon_0}\left[ \dfrac{1}{x^2}-\dfrac{ x}{x^3\left(1+(d/x)^2\right)^{3/2}} \right]\;\hat i$$ where $(d/x)^2\approx 0$ $$ E_{net}=\dfrac{2q}{4\pi \epsilon_0}\left[ \dfrac{1}{x^2}-\dfrac{ x}{x^3 } \right]\;\hat i$$ $$\boxed{E_{net}=\bf 0\;\rm N/C}$$ which is the same result we get from a zero net charge from a point charge at a distance of $x$ fro it. When $x$ is far away the three charges appear as a single charge of value $Q_{net}=q_1+q_2+q_3=0$. And hence, the net electric field must be zero.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.