Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 26 - The Electric Field - Exercises and Problems - Page 776: 33

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ First of all, we need to sketch the problem, as seen below. From the geometry of the figure below, we can see that: $\bullet$ $\theta_1=\theta_2=\theta$ $\bullet$ $r_1=r_2=\sqrt{x^2+(s/2)^2}$ $\bullet$ $\sin\theta=\dfrac{s/2}{r}=\dfrac{s}{2\sqrt{x^2+(s/2)^2}}$ $\bullet$ $\cos\theta=\dfrac{x}{r}=\dfrac{x}{\sqrt{x^2+(s/2)^2}}$ Thus, the electric field exerted by $q_1$ at a point at a distance of $x$, as seen below, is given by $$E_1=\dfrac{kq_1}{r_1^2}\left(\cos\theta\;\hat i-\sin\theta\;\hat j\right)$$ Plug the known; $$E_1=\dfrac{kq}{(x^2+(s/2)^2)}\left(\dfrac{x}{\sqrt{x^2+(s/2)^2}}\;\hat i-\dfrac{s}{2\sqrt{x^2+(s/2)^2}}\;\hat j\right)$$ $$E_1=\dfrac{kq}{\left(x^2+\dfrac{s^2}{4}\right)^{3/2}}\left(x\;\hat i-\dfrac{s}{2 }\;\hat j\right)\tag 1$$ And the electric field by $q_2$ at the same point is given by $$E_2=\dfrac{kq_2}{r_2^2}\left(\cos\theta\;\hat i+\sin\theta\;\hat j\right)$$ Plug the known; $$E_2=\dfrac{kq}{(x^2+(s/2)^2)}\left(\dfrac{x}{\sqrt{x^2+(s/2)^2}}\;\hat i+\dfrac{s}{2\sqrt{x^2+(s/2)^2}}\;\hat j\right)$$ $$E_2=\dfrac{kq}{\left(x^2+\dfrac{s^2}{4}\right)^{3/2}}\left(x\;\hat i+\dfrac{s}{2 }\;\hat j\right)\tag 2$$ Thus, the net electric field is given by $$E_{net}=E_1+E_2$$ Plug from (1) and (2), $$E_{net}=\dfrac{kq}{\left(x^2+\dfrac{s^2}{4}\right)^{3/2}}\left(x\;\hat i-\dfrac{s}{2 }\;\hat j\right)+\dfrac{kq}{\left(x^2+\dfrac{s^2}{4}\right)^{3/2}}\left(x\;\hat i+\dfrac{s}{2 }\;\hat j\right)$$ $$E_{net}=\dfrac{kq}{\left(x^2+\dfrac{s^2}{4}\right)^{3/2}}\left[ x\;\hat i-\dfrac{s}{2 }\;\hat j + x\;\hat i+\dfrac{s}{2 }\;\hat j\right]$$ $$\boxed{E_{net}=\left(\dfrac{2kqx}{\left(x^2+\dfrac{s^2}{4}\right)^{3/2}}\right)\;\hat i}$$ $$\color{blue}{\bf [b]}$$ Plug the known in the boxed formula above, $$ E_{net}=\left(\dfrac{2 (9\times 10^9)(1\times 10^{-9})x}{\left(x^2+\dfrac{0.006^2}{4}\right)^{3/2}}\right)\;\hat i $$ $\Rightarrow$ At $x=0$ m, $$ E_{}=\left(\dfrac{2 (9\times 10^9)(1\times 10^{-9})(0)}{\left(0^2+\dfrac{0.006^2}{4}\right)^{3/2}}\right)\;\hat i =\color{red}{\bf 0}\;\rm N/C$$ $\Rightarrow$ At $x=2$ mm, $$ E_{}=\left(\dfrac{2 (9\times 10^9)(1\times 10^{-9})(0.002)}{\left(0.002^2+\dfrac{0.006^2}{4}\right)^{3/2}}\right)\;\hat i =\color{red}{\bf 768,046}\;\rm N/C$$ $\Rightarrow$ At $x=4$ mm, $$ E_{}=\left(\dfrac{2 (9\times 10^9)(1\times 10^{-9})(0.004)}{\left(0.004^2+\dfrac{0.006^2}{4}\right)^{3/2}}\right)\;\hat i =\color{red}{\bf 567,000}\;\rm N/C$$ $\Rightarrow$ At $x=6$ mm, $$ E_{}=\left(\dfrac{2 (9\times 10^9)(1\times 10^{-9})(0.006)}{\left(0.006^2+\dfrac{0.006^2}{4}\right)^{3/2}}\right)\;\hat i =\color{red}{\bf 357,771}\;\rm N/C$$ $\Rightarrow$ At $x=10$ mm, $$ E_{}=\left(\dfrac{2 (9\times 10^9)(1\times 10^{-9})(0.01)}{\left(0.01^2+\dfrac{0.006^2}{4}\right)^{3/2}}\right)\;\hat i =\color{red}{\bf 158,173}\;\rm N/C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.