Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 25 - Electric Charges and Forces - Exercises and Problems - Page 748: 62

Answer

See the detailed answer below.

Work Step by Step

From the geometry of the given figure, we can see that $r_2=1\;\rm cm$, and $r_1=r_3=\sqrt5\;\rm cm$. The electric field is then given by $$E=\dfrac{kq}{r^2}(\cos\theta\;\hat i+\sin\theta\;\hat j)$$ The charge here is positive so the electric field direction is away from the charge. We chose the origin to be the charge. $\Rightarrow$ $\textbf{At point 1:}$ $$E_1=\dfrac{kq}{r_1^2}(\cos\theta_1\;\hat i+\sin\theta_1\;\hat j)$$ where, from the geometry of the given graph, $\sin\theta_1=0.02/r_1$, and $\cos\theta_1=0.01/r_1$. Thus, $$E_1=\dfrac{kq}{r_1^3}(0.01\;\hat i+0.02\;\hat j)$$ Plug the given; $$E_1=\dfrac{(8.99\times 10^9)(5\times 10^{-9})}{(\sqrt{5}\times 10^{-2})^3}(0.01\;\hat i+0.02\;\hat j)$$ $$E_1=(\color{red}{\bf 4.0\times 10^4}\;\hat i+\color{red}{\bf 8.0\times 10^4}\;\hat j)\;\rm N/C$$ $\Rightarrow$ $\textbf{At point 2:}$ So, the direction of the electric field at point 2 is $\theta_2=0^\circ$, and hence by the same approach, $$E_2=\dfrac{kq}{r_2^2}(\cos\theta_2\;\hat i+\sin\theta_2\;\hat j)$$ $$E_2=\dfrac{kq}{r_2^2}(\cos0^\circ \;\hat i+\sin0^\circ\;\hat j)$$ $$E_2=\dfrac{kq}{r_2^2}(1 \;\hat i+0)=\dfrac{kq}{r_2^2}\;\hat i$$ Plug the given; $$E_2=\dfrac{(8.99\times 10^9)(5\times 10^{-9})}{(1.0\times 10^{-2})^2} \;\hat i$$ $$E_2=(\color{red}{\bf 4.5\times 10^5}\;\hat i )\;\rm N/C$$ $\Rightarrow$ $\textbf{At point 3:}$ $$E_3=\dfrac{kq}{r_3^2}(\cos\theta_3\;\hat i+\sin\theta_3\;\hat j)$$ where, from the geometry of the given graph, $\sin\theta_3=-0.02/r_3$, and $\cos\theta_3=0.01/r_3$. Thus, $$E_3=\dfrac{kq}{r_3^3}(0.01\;\hat i-0.02\;\hat j)$$ Plug the given; $$E_3=\dfrac{(8.99\times 10^9)(5\times 10^{-9})}{(\sqrt{5}\times 10^{-2})^3}(0.01\;\hat i-0.02\;\hat j)$$ $$E_3=(\color{red}{\bf 4.0\times 10^4}\;\hat i-\color{red}{\bf 8.0\times 10^4}\;\hat j)\;\rm N/C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.