Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 25 - Electric Charges and Forces - Exercises and Problems - Page 747: 46

Answer

See the detailed answer below.

Work Step by Step

First of all, we need to draw the force diagram exerted on $+q$-charge. Recalling that the like charges repel and the unlike charge attract. $$\color{blue}{\bf [a]}$$ As we see in the first figure below, at any position that $|x|\lt a$, the net force exerted on $q$ is toward the left. Hence, $$\sum F_{ x,{\rm on} \;q}=-F_{-Q\;{\rm on}\;q}-F_{Q\;{\rm on}\;q}$$ We will neglect the signs of the charges since we are focusing on the forces' directions. $$\sum F_{ x,{\rm on} \;q}=-\dfrac{kQq}{(a+x)^2}-\dfrac{kQq}{(a-x)^2}$$ $$\sum F_{ x,{\rm on} \;q}= \dfrac{- kQq(a-x)^2-kQq(a+x)^2}{(a+x)^2(a-x)^2} $$ Recalling that $(a-x)(a+b)=a^2-b^2$: $$\sum F_{ x,{\rm on} \;q}= \dfrac{-kQq[(a-x)^2+(a+x)^2]}{ (a^2-x^2)^2} $$ $$\sum F_{ x,{\rm on} \;q}= \dfrac{-kQq[a^2-2ax+x^2+a^2+2ax+x^2]}{ (a^2-x^2)^2} $$ $$\sum F_{ x,{\rm on} \;q}= \dfrac{-kQq[2a^2+2x^2]}{ (a^2-x^2)^2} $$ $$\boxed{\sum F_{ x,{\rm on} \;q}= \dfrac{-2kQq(a^2+x^2)}{ (a^2-x^2)^2} }$$ $$\color{blue}{\bf [b]}$$ When $|x|\gt a$, we have two cases. when $q$ is on the right side and when it is on the left side. Let's start with the right side: As we see in the second figure below, we cans ee that the force from $-Q$ is toward the left and the force from $Q$ is toward the right. Hence, $$\sum F_{ x,{\rm on} \;q}=-F_{-Q\;{\rm on}\;q}+F_{Q\;{\rm on}\;q}$$ $$\sum F_{ x,{\rm on} \;q}=-\dfrac{kQq}{(a+x)^2}+\dfrac{kQq}{(x-a)^2}$$ As we mentioned above we are neglecting the charge sings since we know the direction of the forces. Rearranging: $$\sum F_{ x,{\rm on} \;q}=\dfrac{kQq}{(x-a)^2}-\dfrac{kQq}{(x+a)^2}$$ $$\sum F_{ x,{\rm on} \;q}=\dfrac{kQq (x+a)^2 - kQq(x-a)^2}{(x-a)^2(x+a)^2} $$ $$\sum F_{ x,{\rm on} \;q}=\dfrac{kQq [ x^2+2ax+a^2 - (x^2-2ax+a^2)]}{(x-a)^2(x+a)^2} $$ $$\sum F_{ x,{\rm on} \;q}=\dfrac{kQq [ x^2+2ax+a^2 - x^2+2ax-a^2]}{(x-a)^2(x+a)^2} $$ $$\boxed{\sum F_{ x,{\rm on} \;q}= \dfrac{4axkQq }{ (x^2-a^2 )^2} }$$ Now let's start with the left side: As we see in the third figure below, we cans ee that the force from $-Q$ is toward the right and the force from $Q$ is toward the left. Hence, $$\sum F_{ x,{\rm on} \;q}= F_{-Q\;{\rm on}\;q}-F_{Q\;{\rm on}\;q}$$ $$\sum F_{ x,{\rm on} \;q}= \dfrac{kQq}{(x-a)^2}-\dfrac{kQq}{(x+a)^2}$$ Rearranging: $$\sum F_{ x,{\rm on} \;q}= \dfrac{kQq (x+a)^2 -kQq (x-a)^2 }{(x-a)^2(x+a)^2} $$ $$\sum F_{ x,{\rm on} \;q}= \dfrac{kQq [ x^2+2ax+a^2 -(x^2-2ax+a^2)] }{(x-a)^2(x+a)^2} $$ $$\sum F_{ x,{\rm on} \;q}= \dfrac{kQq [ x^2+2ax+a^2 -x^2+2ax-a^2] }{(x^2-a^2)^2} $$ $$\boxed{\sum F_{ x,{\rm on} \;q}= \dfrac{4axkQq }{(x^2-a^2)^2} }$$ We can see from the last two boxed formula above, that in both cases, when $|x|\gt a$, the net force is always to the right.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.