Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 22 - Wave Optics - Exercises and Problems - Page 653: 74

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We can see from the given figures and from the geometry of the figure below, that the path length difference between the two rays is given by $$\Delta r=\Delta r_2-\Delta r_1$$ where we can see that the orange ray (ray 1) travels an extra distance of $d\sin\phi$ to reach the next reflection part, while the blue ray (ray 2) travels an extra distance of $d\sin\theta$ to reach the wavefront. Hence, $$\Delta r=d\sin\theta-d\sin\phi$$ $$\boxed{\Delta r=d(\sin\theta-\sin\phi)}$$ $$\color{blue}{\bf [b]}$$ Equation 22.15, which the author told us to use, is $$d\sin\theta_m=m\lambda $$ where $m\lambda=\Delta r$, so $$ \Delta r=m\lambda $$ Plugging $\Delta r$ from the boxed formula above, $$ d(\sin\theta-\sin\phi)=m\lambda $$ $$ \boxed{d \sin\theta_m=m\lambda +d\sin\phi}$$ where $m=0.\pm1,\pm2,\pm3,...$ the negative value of $m$ here will also give a diffraction angle which is different than the positive $m$s. $$\color{blue}{\bf [c]}$$ when $m=0$, $$d \sin\theta_0=(0)\lambda +d\sin\phi$$ $$d \sin\theta_0= d\sin\phi$$ Thus, $$\boxed{\theta_0=\phi}$$ $$\color{blue}{\bf [d]}$$ Solving, $d \sin\theta_m=m\lambda +d\sin\phi$, for $\theta_m$, $$ \theta_m= \sin^{-1}\left[\dfrac{m\lambda} {d}+\sin\phi\right]$$ Plugging the known, where $d=1/N$, $$ \theta_m= \sin^{-1}\left[\dfrac{m(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]$$ At $m=0$, $$ \theta_0= \sin^{-1}\left[\dfrac{(0)(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]=\color{red}{\bf 40^\circ}$$ At $m=1$, $$ \theta_1= \sin^{-1}\left[\dfrac{(1)(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]=\color{red}{\bf 83.11^\circ}$$ At $m=2$, $$ \theta_1= \sin^{-1}\left[\dfrac{(2)(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]=\color{red}{\bf Undefined}$$ So larger than $m\gt 1$ is not defined. At $m=-1$, $$ \theta_{(-1)}= \sin^{-1}\left[\dfrac{(-1)(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]=\color{red}{\bf 17^\circ}$$ At $m=-2$, $$ \theta_{(-2)}= \sin^{-1}\left[\dfrac{(-2)(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]=\color{red}{\bf -3.28^\circ}$$ At $m=-3$, $$ \theta_{(-3)}= \sin^{-1}\left[\dfrac{(-3)(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]=\color{red}{\bf -24^\circ}$$ At $m=-4$, $$ \theta_{(-4)}= \sin^{-1}\left[\dfrac{(-4)(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]=\color{red}{\bf -49.2^\circ}$$ At $m=-5$, $$ \theta_{(-5)}= \sin^{-1}\left[\dfrac{(-5)(500\times 10^{-9})} {\dfrac{10^{-3}}{700}}+\sin40^\circ\right]=\color{red}{\bf Undefined^\circ}$$ So less than $m\lt -4$ is not defined. $$\color{blue}{\bf [e]}$$ See the last figure below. Noting that the angles of $\theta$ are relative to the vertical axis.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.