Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 21 - Superposition - Exercises and Problems - Page 626: 80

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We need to find the phase difference in both cases, right and left. $$D_{1,\rm Right}=a\sin\left[ 2\pi\left(\dfrac{x}{\lambda}-\dfrac{t}{T}\right)\right]$$ $$D_{2,\rm Right}=a\sin\left[ 2\pi\left(\dfrac{x-L}{\lambda}-\dfrac{t}{T}\right)+\phi_{20}\right]$$ Hence, the phase difference between them on the right side is given by $$\Delta \phi_{\rm Right}=\phi_2-\phi_1$$ $$\Delta \phi_{\rm Right}= 2\pi\left(\dfrac{x-L}{\lambda}-\dfrac{t}{T}\right)+\phi_{20}-\left[ 2\pi\left(\dfrac{x}{\lambda}-\dfrac{t}{T}\right)\right]$$ $$\Delta \phi_{\rm Right}= 2\pi\left(\dfrac{x-L}{\lambda}-\dfrac{t}{T}\right)+\phi_{20}- 2\pi\left(\dfrac{x}{\lambda}-\dfrac{t}{T}\right) $$ $$\Delta \phi_{\rm Right}= 2\pi\left[ \dfrac{x-L}{\lambda}-\dfrac{t}{T} - \dfrac{x}{\lambda}+\dfrac{t}{T} \right]+\phi_{20}$$ $$\Delta \phi_{\rm Right}= 2\pi\left[ \dfrac{x-L}{\lambda}-\dfrac{t}{T} - \dfrac{x}{\lambda}+\dfrac{t}{T} \right]+\phi_{20}$$ $$\Delta \phi_{\rm Right}= \dfrac{ -2\pi L}{\lambda} +\phi_{20}$$ And since we need the interference in the right to be perfectly constructive, $$\Delta \phi_{\rm Right}= \dfrac{ -2\pi L}{\lambda} +\phi_{20}=2\pi n\tag 1$$ $$D_{1,\rm Left}=a\sin\left[ 2\pi\left(\dfrac{-x}{\lambda}-\dfrac{t}{T}\right)\right]$$ $$D_{2,\rm Left}=a\sin\left[ 2\pi\left(\dfrac{-x+L}{\lambda}-\dfrac{t}{T}\right)+\phi_{20}\right]$$ Hence, the phase difference between them on the left side is given by $$\Delta \phi_{\rm Left}=\phi_2-\phi_1$$ $$\Delta \phi_{\rm Right}= 2\pi\left(\dfrac{-x+L}{\lambda}-\dfrac{t}{T}\right)+\phi_{20}-\left[ 2\pi\left(\dfrac{-x}{\lambda}-\dfrac{t}{T}\right)\right]$$ $$\Delta \phi_{\rm Right}= 2\pi\left[\dfrac{-x+L}{\lambda}-\dfrac{t}{T} - \left(\dfrac{-x}{\lambda}-\dfrac{t}{T}\right)\right]+\phi_{20}$$ $$\Delta \phi_{\rm Right}= 2\pi\left[\dfrac{-x+L}{\lambda}-\dfrac{t}{T} - \dfrac{-x}{\lambda}+\dfrac{t}{T}\right]+\phi_{20}$$ $$\Delta \phi_{\rm Right}= 2\pi\left[\dfrac{L}{\lambda} \right]+\phi_{20}$$ And since we need the interference in the right to be perfectly destructive, $$\Delta \phi_{\rm Right}= \dfrac{2\pi L}{\lambda} +\phi_{20}=2\pi\left(m+\frac{1}{2}\right)\tag 2$$ Solving (1) for $\phi_0$; $$ \phi_{20}=2\pi n+ \dfrac{ 2\pi L}{\lambda}\tag 3$$ Plugging into (2); $$ \dfrac{2\pi L}{\lambda} +2\pi n+ \dfrac{ 2\pi L}{\lambda}=2\pi\left(m+\frac{1}{2}\right)$$ $$ \dfrac{ L}{\lambda} + n+ \dfrac{ L}{\lambda}= m+\frac{1}{2} $$ The smallest value of $L$ occurs when $m=n$, so $$ \dfrac{2 L}{\lambda}= \frac{1}{2} $$ $$\boxed{L= \frac{1}{4}\lambda}$$ $$\color{blue}{\bf [b]}$$ From (3); $$ \phi_{20}=2\pi n+ \dfrac{ 2\pi L}{\lambda} $$ where $L= \frac{1}{4}\lambda$ $$ \phi_{20}=2\pi n+ \dfrac{ 2\pi ( \frac{1}{4}\lambda)}{\lambda} $$ $$ \phi_{20}=2\pi n+\frac{1}{2}\pi$$ Noting that the integer numbers of $2\pi$ is the same phase since it is one full circle, so $2\pi n$ does not change the phase. So we can say that $n=0$, and hence, $$ \boxed{ \phi_{20}= \frac{1}{2}\pi\;\rm rad}$$ $$\color{blue}{\bf [c]}$$ We know that $ \phi_{20}= \dfrac{\pi}{2}=\frac{1}{4}(2\pi)$, and $L=\frac{1}{4}\lambda$. So we can reach to that by delaying the wave by the same fraction of $T$, $$\boxed{\Delta t=\frac{1}{4}T}$$ $$\color{blue}{\bf [d]}$$ $$\Delta t=\frac{1}{4}T$$ where $T=1/f$, $$\Delta t=\frac{1}{4f}=\dfrac{1}{4\cdot 1000\times 10^2}$$ $$\Delta t=\color{red}{\bf 2.5\times 10^{-7}}\;\rm s$$ $$L=\frac{1}{4}\lambda$$ where $\lambda=c/f$ $$L=\frac{c}{4f}=\dfrac{3\times 10^8}{4\cdot 10^6}$$ $$L=\color{red}{\bf 75}\;\rm m$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.