Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 20 - Traveling Waves - Exercises and Problems - Page 589: 68

Answer

$78.5\;\rm dB$

Work Step by Step

First, we need to sketch the problem as seen below. We need to find $\beta_2$ where $\beta_1=75\;\rm dB$, so $$\Delta \beta=\beta_2-\beta_1$$ $$\Delta \beta=10\log_{10}\left(\dfrac{I_2}{I_0}\right)-10\log_{10}\left(\dfrac{I_1}{I_0}\right)$$ $$\Delta \beta=10\left[\log_{10}\left(\dfrac{I_2}{I_0}\right)- \log_{10}\left(\dfrac{I_1}{I_0}\right)\right]$$ $$\Delta \beta=10 \log_{10}\left(\dfrac{\dfrac{I_2}{I_0}}{\dfrac{I_1}{I_0}}\right) $$ Thus, $$\beta_2-\beta_1=10 \log_{10}\left(\dfrac{ I_2}{I_1}\right) $$ $$\beta_2=10 \log_{10}\left(\dfrac{ I_2}{I_1}\right)+\beta_1\tag 1 $$ Now since the two loudspeakers broadcast equally in all directions, $$I=\dfrac{P}{A}$$ where $P$ is the power emitted by the source, and $A=4\pi R^2$ is the surface area of a sphere. Hence, $$I_1=\dfrac{P_{S_1}}{4\pi \left(\frac{L}{2}\right)^2}+\dfrac{P_{S_2}}{4\pi \left(\frac{L}{2}\right)^2}$$ where $P_{S_1}=P_{S_2}=P$; $$I_1=\dfrac{P }{ \pi L^2}+\dfrac{P}{ \pi L^2}$$ $$I_1= \dfrac{2P}{ \pi L^2}\tag 2$$ And $$I_2=\dfrac{P_{S_1}}{4\pi \left(\frac{3L}{4}\right)^2}+\dfrac{P_{S_2}}{4\pi \left(\frac{L}{4}\right)^2}$$ $$I_2=\dfrac{4P }{ 9\pi L^2}+\dfrac{4P}{ \pi L^2}$$ $$I_2=\dfrac{40P }{ 9\pi L^2} =\dfrac{20 }{ 9 }\left[\dfrac{2P }{ \pi L^2}\right]$$ Plugging from (2); $$I_2 =\dfrac{20 }{ 9 } I_1$$ Thus, $$\dfrac{I_2}{I_1}=\dfrac{20 }{ 9 }$$ Plugging into (1) and plugging the known; $$\beta_2=10 \log_{10}\left(\dfrac{ 20}{9}\right)+75 $$ $$\beta_2=\color{red}{\bf 78.5}\;\rm dB$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.