Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 20 - Traveling Waves - Exercises and Problems - Page 588: 56

Answer

See the detailed answer below.

Work Step by Step

a) We know that the wave speed in a stretched string is given by $$v=\sqrt{\dfrac{T_S}{\mu}}$$ Plugging the known; $$v=\sqrt{\dfrac{20}{2\times 10^{-3}}}=\color{red}{\bf 100}\;\rm m/s$$ The wavelength is given by $$v=\lambda d$$ $$\lambda=\dfrac{v}{f}=\dfrac{100}{100}=\color{red}{\bf 1.0}\;\rm m$$ b) The amplitude is the maximum displacement, so $$A=\color{red}{\bf 1.0}\;\rm mm$$ And the phase constant is found at $x=0$, and $t=0$, when $D=-A$ $$D_{(x,t)}=A\sin\left[ \dfrac{2\pi x}{\lambda}-\dfrac{2\pi t}{T}+\phi_0 \right]$$ And at $t=0$, $x=0$, $$D_{(0,0)}=-A= A\sin\phi_0 $$ Hence, $$\phi_0\sin^{-1}(-1)=\color{red}{\bf -\dfrac{\pi}{2}}\;\rm rad$$ c) We know that the displacement equation for a sinusoidal wave $$D_{(x,t)}=A\sin\left[ \dfrac{2\pi x}{\lambda}- 2\pi f t +\phi_0 \right]$$ Plugging the known; $$\boxed{D_{(x,t)}=(1.0{\;\rm mm})\sin\left[ 2\pi x - 200\pi t -\frac{\pi}{2}\right]}$$ d) At $t=15$ ms, and $x=0.5$ m, then $$D_{(x,t)}= 1.0 \sin\left[ 2\pi(0.5) - 200\pi (15\times 10^{-3}) -\frac{\pi}{2}\right]$$ $$D_{(x,t)}= \color{red}{\bf -1.0}\;\rm mm$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.