Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 19 - Heat Engines and Refrigerators - Exercises and Problems - Page 554: 72

Answer

See the detailed answer below.

Work Step by Step

First of all, we need to find the number of moles of the gas, so we need to use the ideal gas law. $$PV=nRT$$ $$n=\dfrac{P_1V_1}{RT_1}=\dfrac{(1.013\times 10^5)(1050\times 10^{-6})}{(8.31)(25+273)}=\bf 0.043\;\rm mol$$ And we know that $\gamma=\dfrac{C_{\rm P}}{C_{\rm V}}=1.4$, and that $C_{\rm P}-C_{\rm V}=R$, so $\dfrac{C_{\rm V}+R}{C_{\rm V}}=1.4$. Thus, $$C_{\rm V}=\frac{5}{2}R~~~~{\rm and}~~~~C_{\rm P}=\frac{7}{2}R$$ $$\bf (a)$$ We have all the data for point 1. Let's work on point 2, from 1 to 2 it is an adiabatic process where $$P_1V_1^\gamma=P_2V_2^\gamma$$ Hence, $$P_2=P_1\left[\dfrac{V_1}{V_2}\right]^\gamma=1.0\left[\dfrac{1050}{50}\right]^{1.4}=\bf 71\;\rm atm$$ With the same approach, for the same process, $$T_2=T_1\left[\dfrac{V_1}{V_2}\right]^{\gamma-1}=(25+273)\left[\dfrac{1050}{50}\right]^{1.4-1}=\bf 1007\;\rm K=\bf 734^\circ\rm C$$ At point 3, we don't know the volume or the temperature, but we know the pressure. Noting that from 2 to 3 there is an isobaric process where $Q=1000\;\rm J$. Thus, $$Q=nC_{\rm P}(T_3-T_2)$$ Thus, $$T_3=\dfrac{Q}{nC_{\rm P}}+T_2 =\dfrac{1000}{(0.043)(\frac{7}{2})(8.31)}+(734+273)=\bf 1807\;\rm K=\bf 1534^\circ \rm C$$ Now it is easy to find $V_3$ by using the ideal gas law, $$V_3=\dfrac{nRT_3}{P_3}=\dfrac{(0.043)(8.31)(1807)}{71\times 1.013\times 10^5}=\bf 89.8\;\rm cm^3$$ Now from 3 to 4, we have an adiabatic process, so $$P_3V_3^\gamma=P_4V_4^\gamma$$ Hence, $$P_4=P_3\left[\dfrac{V_3}{V_4}\right]^{\gamma}=(71)\left[\dfrac{89.8 }{1050 }\right]^{1.4}=\bf 2.27\;\rm atm$$ And $T_4$ is given by $$T_4=\dfrac{P_4V_4}{nR}=\dfrac{ (2.27 \times 1.013\times 10^5)(1050\times 10^{-6})}{(0.043)(8.31)}=\bf 675.7\;\rm K=\bf 402.7^\circ\rm C$$ See the table below: \begin{array}{|c|c|c|c|} \hline &P\;({\rm atm})& V\;({\rm cm^3})&T\;({\rm ^\circ C})\\ \hline \rm Point 1& 1 & 1050&25 \\ \hline \rm Point 2 & 71& 50&734\\ \hline \rm Point 3 & 71& 89.8&1534 \\ \hline \rm Point 4 &2.27 & 1050&402.7\\ \hline \end{array} $$\bf (b)$$ The net work done in one full cycle is given by $$W=W_{1\rightarrow2}+W_{2\rightarrow3}+W_{3\rightarrow4}+W_{4\rightarrow1}$$ From 4 to 1, is an isochoric process, so $W=0$ $$W=W_{1\rightarrow2}+W_{2\rightarrow3}+W_{3\rightarrow4}+0$$ From 1 to 2, and 3 to 4 are adiabatic processes, so $Q=0$, and hence, $\Delta E_{th}=-W$. and the work done on the isobaric process is given by the area under the curve. $$W=-nC_{\rm V}(T_2-T_1)+P_{2}(V_3-V_2)+-nC_{\rm V}(T_4-T_3)$$ $$W=-\frac{5}{2}nR(T_2-T_1+T_4-T_3)+P_{2}(V_3-V_2) $$ $$W=-\frac{5}{2}(0.043)(8.31)(1007-298+675.7-1808)\\ +(71\times 1.013\times 10^5)(89.8-50)\times 10^{-6} $$ $$W=\color{red}{\bf 664}\;\rm J$$ $$\bf (c)$$ The thermal efficiency is given by $$\eta=\dfrac{W}{Q_H}=\dfrac{664}{1000}=\color{red}{\bf0.664}$$ $$\bf (d)$$ The power output of an engine of 8 cylinders is given by $${\rm Power}=8\cdot \dfrac{W}{t}=8\cdot\dfrac{664}{60}(2400)$$ $${\rm Power}=\color{red}{\bf 212 }\;\rm kW=\color{red}{\bf 284}\;\rm hp$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.