Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 19 - Heat Engines and Refrigerators - Exercises and Problems - Page 554: 71

Answer

See the detailed answer below.

Work Step by Step

a) We have 4 processes, two diabetic and two isochoric processes. We know that the work done by the system is given by $$W=W_{1\rightarrow2}+W_{2\rightarrow3}+W_{3\rightarrow4}+W_{4\rightarrow1}$$ For the two isochoric processes, the work done is zero. $$W=W_{1\rightarrow2}+0+W_{3\rightarrow4}+0$$ In the two adiabatic processes, the heat exchange is zero, so $\Delta E_{th}=-W_s$ thus, $W_s=-\Delta E$ $$W=-nC_{\rm V}(T_2-T_1)-nC_{\rm V}(T_4-T_3)$$ $$W=-nC_{\rm V}[T_2-T_1+T_4-T_3]\tag 1$$ We know that $$\dfrac{C_{\rm P}}{C_{\rm V}}=\gamma$$ Hence, $$C_{\rm P} = \gamma\; C_{\rm V}$$ where $$C_{\rm P}- C_{\rm V} = R$$ Thus, $$\gamma \;C_{\rm V}- C_{\rm V} = R$$ So $$C_{\rm V}=\dfrac{R}{\gamma-1}$$ Plugging into (1); $$W=-\dfrac{nR}{\gamma-1} [T_2-T_1+T_4-T_3] $$ $$\boxed{W= \dfrac{nR}{1-\gamma} [T_2-T_1+T_4-T_3] }$$ ________________________________________________________ b) We know that the thermal efficiency of the heat engine is given by $$\eta=\dfrac{W_{out}}{Q_{H}}$$ where $W_{out}=Q_H-Q_C$, thus $$\eta=1-\dfrac{Q_C}{Q_H}$$ $Q_H$ occurs at the isochoric process from 2 to 3, and $Q_C$ occurs at the isochoric process from 4 to 1. $$\eta=1-\dfrac{ \color{red}{\bf\not} n \color{red}{\bf\not} C_{\rm V}(T_1-T_4)}{ \color{red}{\bf\not} n \color{red}{\bf\not} C_{\rm V}(T_3-T_2)}$$ $$\eta=1-\dfrac{ (T_1-T_4)}{ (T_3-T_2)}$$ using the ideal gas law $PV=nRT\rightarrow T=\dfrac{PV}{nR}$. Hence, $$\eta=1-\dfrac{ P_1V_1-P_4V_4}{P_3V_3-P_2V_2}$$ where $V_1=V_4=V_{\rm max}$ and $V_2=V_3=V_{\rm min}$ $$\eta=1-\dfrac{ P_1V_1-P_4V_4}{P_3V_3-P_2V_2}=1-\dfrac{V_{\rm max}(P_1-P_4)}{V_{\rm min}(P_3-P_2)}$$ where $V_{\rm max}/V_{\rm min}=r$ $$\eta=1-r\left[\dfrac{P_1-P_4}{P_3-P_2}\right] $$ Noting that $P_1\lt P_4$ but $P_3\gt P_2$, so the numerator is negative. and to make it positive, $$\eta=1+r\left[\dfrac{P_4-P_1}{P_3-P_2}\right]\tag 2$$ where $P_3V_{\rm min}^\gamma=P_4V_{\rm max}^\gamma$, so $P_3=P_4\left[\dfrac{V_{\rm max}}{V_{\rm min}}\right]^\gamma=P_4r^{\gamma}$, and by the same approach, $P_2=P_1\left[\dfrac{V_{\rm max}}{V_{\rm min}}\right]^\gamma=P_1r^{\gamma}$. Plugging into (2); $$\eta=1-r\left[\dfrac{P_4-P_1}{P_4r^{\gamma}-P_1r^{\gamma}}\right] $$ $$\eta=1-\dfrac{r}{r^{\gamma}}\left[\dfrac{P_4-P_1}{P_4-P_1}\right] $$ $$\boxed{\eta=1-\dfrac{1}{r^{\gamma-1}} }$$ ________________________________________________________ c) We know, for diatomic gas, that $C_{\rm V}=\frac{5}{2}R$, and $C_{\rm P}=\frac{7}{2}R$, and hence, $\gamma=7/5$ Plugging into the previous boxed formula above, $$\eta=1-\dfrac{1}{r^{\frac{7}{5}-1}} $$ $$\boxed{\eta=1-\dfrac{1}{r^{\frac{2}{5}}}} $$ Here is the graph below
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.