Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 15 - Fluids and Elasticity - Exercises and Problems - Page 439: 71

Answer

$ \dfrac{h }{l } =\sqrt[3]{1-\dfrac{ \rho_{\rm o}}{\rho_{\rm f}} } $

Work Step by Step

First, we need to find the buoyant force exerted on the cone. We know that this buoyant force is equal to the cone's weight since it is floating in equilibrium. $$\sum F_{y,cone}=F_B-mg=ma_y=m(0)=0$$ Hence, $$F_B=mg\tag1$$ And we know, from Archimedes’ principle, that the buoyant force is given by the weight of the displaced liquid. $$F_B=m_{\rm f}g=\rho_{\rm f}V_{1}g$$ where $V_1$ is the volume of the displaced liquid which is the volume of the submerged part of the cone under the liquid surface as well. So, $$F_B=\rho_{\rm f}V_1g$$ Plugging into (1); $$\rho_{\rm f}V_1\color{red}{\bf\not}g=m\color{red}{\bf\not}g $$ Thus, $$\rho_{\rm f}V_1 =m $$ where $m=\rho_{\rm o}V$ $$\rho_{\rm f}V_1 =\rho_{\rm o}V\tag 2 $$ Now we need to find the volume of the submerged part $V_1$ and as we see in the figure below, the whole volume of the cone is given by $$V=V_1+V_2$$ So, $$V_1=V-V_2$$ where $V=\frac{1}{3}Al$ and $V_2=\frac{1}{3}A_2h$ where $A$ is the cross-sectional area of the cone's base. $$V_1=\frac{1}{3}Al-\frac{1}{3}A_2h$$ $$V_1=\frac{1}{3}(\pi r^2)l-\frac{1}{3}(\pi r_2^2)h $$ $$V_1=\frac{1}{3} \pi \left[r^2 l- r_2^2 h\right]\tag 3$$ From the geometry of the figure below, we can see that $$\tan\theta=\dfrac{r}{l}=\dfrac{r_2}{h}$$ Hence, $$r_2=\dfrac{rh}{l}$$ Plugging into (3); $$V_1=\frac{1}{3} \pi \left[r^2 l- \left(\dfrac{rh}{l}\right)^2 h\right] $$ $$V_1=\frac{1}{3} \pi \left[r^2 l- \dfrac{r^2h^3}{l^2} \right] $$ $$V_1=\frac{1}{3} \pi \left[ \dfrac{r^2 l^3-r^2h^3}{l^2} \right] $$ $$V_1=\frac{1}{3} \pi r^2\left[ \dfrac{l^3-h^3}{l^2} \right] $$ Plugging into (2); $$\frac{1}{3} \pi r^2\left[ \dfrac{l^3-h^3}{l^2} \right]\rho_{\rm f} =\rho_{\rm o}V $$ Plug the volume of the whole cone; $$\frac{1}{3} \pi r^2\left[ \dfrac{l^3-h^3}{l^2} \right]\rho_{\rm f} =\frac{1}{3} \pi r^2 l\rho_{\rm o} $$ $\frac{1}{3} \pi r^2$ cancels from both sides; $$ \dfrac{l^3-h^3}{l^2} \rho_{\rm f} = l\rho_{\rm o} $$ $$ \dfrac{l^3-h^3}{l^3} =\dfrac{ \rho_{\rm o}}{\rho_{\rm f}} $$ $$ 1-\dfrac{h^3}{l^3} =\dfrac{ \rho_{\rm o}}{\rho_{\rm f}} $$ $$ \dfrac{h^3}{l^3} =1-\dfrac{ \rho_{\rm o}}{\rho_{\rm f}} $$ Therefore, $$\boxed{ \dfrac{h }{l } =\sqrt[3]{1-\dfrac{ \rho_{\rm o}}{\rho_{\rm f}} }}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.