Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 14 - Oscillations - Exercises and Problems - Page 403: 33

Answer

$0.41\;\rm s$

Work Step by Step

We know that the position of an object that undergoes a simple harmonic motion is given by $$x_{(t)}=A\cos(\omega t+\phi_0)\tag 1$$ At $t=0$, $x=0$, so $$0=A\cos(\omega (0)+\phi_0)=A\cos (\phi_0)$$ Thus, $$\phi_0=\cos^{-1}(0)=\pm \dfrac{\pi }{2}$$ And since the object is traveling to the right, so it must be in the fourth quadrant, so that $$\phi_0= \dfrac{-\pi }{2}\tag 2$$ Plugging into (1); $$x_{(t)}=A\cos\left(2\pi f t+ \dfrac{ -\pi }{2}\right) $$ $$x_{(t)}=A\cos\left(\frac{2\pi}{T} t- \dfrac{ \pi }{2}\right) $$ Plugging the known; $$6=10 \cos\left(\frac{2\pi}{4} t- \dfrac{ \pi }{2}\right) $$ $$ \cos\left(\frac{ \pi}{2} t- \dfrac{ \pi }{2}\right) =0.6$$ Recall that $\cos(\theta-90^\circ)=\sin\theta$, so $$ \sin\left(\frac{ \pi}{2} t \right) =0.6$$ $$ \frac{\pi}{2} t =\sin^{-1}(0.6)$$ $$ t =\dfrac{2\sin^{-1}(0.6) }{\pi }=\color{red}{\bf 0.41}\;\rm s$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.